### References

Bai, J., and Ng, S. (2008). “Forecasting economic time series using targeted predictors”, *Journal of Econometrics*, 146(2), pp. 304–317.

Bussière, M., Callegari, G., Ghironi, F., Sestieri, G., and Yamano, N. (2013). “Estimating Trade Elasticities: Demand Composition and the Trade Collapse of 2008-2009”, *American Economic Journal: Macroeconomics*, 5(3), pp. 118–151.

Chen, T., and Guestrin, C. (2016). “XGBoost: A Scalable Tree Boosting System”, in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 785–794.

Chinn, M., Meunier, B., and Stumpner, S. (2023). “Nowcasting world trade with machine learning: a three-step approach”, *Working Paper Series*, No 2836, European Central Bank.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). “Least angle regression”, *Annals of Statistics*, 32(2), pp. 407–499.

Goehry, B. (2020). “Random forests for time-dependent processes”, *ESAIM: Probability and Statistics*, 24, pp. 801–826.

Goulet-Coulombe, P. (2020). “The Macroeconomy as a Random Forest”, *arXiv pre-print*.

Goulet-Coulombe, P., Leroux, M., Stevanovic, D., and Surprenant, S. (2022). “How is machine learning useful for macroeconomic forecasting?”, *Journal of Applied Econometrics*, 37(5), pp. 920–964.

Stock, J., and Watson, M. (2002). “Forecasting using principal components from a large number of predictors”, *Journal of the American Statistical Association*, 97(460), pp. 1167–1179.