References
Beck, G., Carstensen, K., Menz, J.-O., Schnorrenberger, R., and Wieland, E. (2023). Nowcasting Consumer Price Inflation Using High-Frequency Scanner Data: Evidence from Germany. Deutsche Bundesbank Discussion Paper, 34.
Breitung, J. and Roling, C. (2015). Forecasting inflation rates using daily data: A nonparametric MIDAS approach. Journal of Forecasting, 34(7):588–603.
Hauzenberger, N., Huber, F., and Klieber, K. (2023). Real-Time Inflation Forecasting Using Non-Linear Dimension Reduction Techniques. International Journal of Forecasting, 39(2):901–921.
Knotek, E. S. and Zaman, S. (2017). Nowcasting US headline and core inflation. Journal of Money, Credit and Banking, 49(5):931–968.
Knotek II, E. S. and Zaman, S. (2023). Real-time density nowcasts of US inflation: A model combination approach. International Journal of Forecasting, 39(4):1736–1760.
Medeiros, M. C., Vasconcelos, G., and Freitas, E. (2016). Forecasting Brazilian inflation with high-dimensional models. Brazilian Review of Econometrics, 36(2):223–254.
Modugno, M. (2013). Now-casting inflation using high frequency data. International Journal of Forecasting, 29(4):664–675.
Monteforte, L. and Moretti, G. (2013). Real-Time Forecasts of Inflation: The Role of Financial Variables. Journal of Forecasting, 32(1):51–61.
Schnorrenberger, R., Schmidt, A., and Moura, G. V. (2024). Harnessing Machine Learning for RealTime Inflation Nowcasting. De Nederlandsche Bank Working Paper No. 806.
Stock, J. H. and Watson, M. W. (2007). Why has US inflation become harder to forecast? Journal of Money, Credit and Banking, 39:3–33.