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Abstract 

Research reports mixed results on the impact of trade and technological progress on employment in advanced 

economies. Using Bayesian Model Averaging, we conduct a meta-regression analysis of 397 technology and 355 trade 

employment elasticities from 56 studies in order to draw conclusions from this research base. Controlling for 

publication bias (mainly in reported technology elasticities) and study design characteristics, our best practice 

estimates show that technology increases employment of low-skilled and high-skilled workers, while trade reduces 

employment of low-skilled workers. 
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Motivation 

In a recent study (Terzidis et al., 2025), we address a long-standing empirical and policy debate: to what extent have 

globalization (trade) and technological change influenced employment patterns in advanced economies? With the 

reemergence of protectionist rhetoric, particularly in the context of the Trump presidency, attention has turned 

towards (the perceived) job losses linked to trade and technology. With respect to trade especially import competition 

with China stands out. But in general, the discussion focusses on the negative aspects of trade and technology. The 

empirical evidence on the employment effects of technology and trade is rather mixed. It is well known that 

methodological, specification, and data differences affect empirical estimates. These differences can lead to 

heterogeneity in reported estimates. A meta-regression analysis can help to draw inferences from an existing body of 

literature, even if results are mixed. Meta-regression analysis helps to explain why results differ systematically within 

and between studies. It is based on a focused examination of the role of methodological, specification, and data factors 

on, in our case, the reported technology and trade employment elasticities. It thus can help to answer the question of 

how trade and technology affect employment: who gains, who loses.  

 

In general, our study highlights the skill level of the workforce as the main factor conditioning the impact from 

technology and trade. In essence, we find that technology increases employment of low-skilled and high-skilled 

workers, while trade reduces employment of low-skilled workers.  

 

 

The Empirical Puzzle 

According to the Heckscher-Ohlin-Stolper-Samuelson (HOSS) models, countries export goods that intensively use their 

abundant production factors, with price changes influencing factor utilization. This suggests a decline in high-skilled 

employment in advanced economies, yet the 1980s saw the opposite—rising high-skilled employment despite higher 

relative wages—indicating the role of skill-biased technological change. For HOSS effects to be significant, trade flows 

must be large, but studies found that during the 1980s–1990s U.S. import volumes were too small to explain labor 

market shifts (Borjas et al., 1997; Berman et al., 1998; Krugman, 2000). As a result, technology was considered the 

main driver of employment changes. Technological progress increases demand for high-skilled workers and may make 

low-skilled jobs obsolete (Helpman, 2009). It can also substitute labor through process innovations and affect sectors 

unevenly. However, trade and technology effects are hard to separate because both can explain labor outcomes. 

Grossman and Rossi-Hansberg (2008), for example, conclude on mixed effects from offshoring: reducing costs, 

boosting productivity, and acting as a low-skill biased technical change, but also increasing labor supply pressures. 

Overall, technological progress can complement or counteract trade’s effects, contributing to mixed evidence on their 

relative roles in shaping employment.  

 

The mixed evidence of recent literature can be illustrated by patenting, which was linked to employment growth in the 

U.S. (Balasubramanian and Sivadasan, 2011), but this effect was limited to high-tech manufacturing in Europe (Van 

Roy et al., 2018). Similarly, the impact of industrial robots remains inconclusive: Acemoglu and Restrepo (2020) report 

job losses in the U.S., while Dauth et al. (2021) show German service job gains offset manufacturing losses. Graetz and 

Michaels (2018) found no significant effects in six advanced economies. 

 

Evidence on skill-level effects also varies. While technology generally raises demand for high-skilled labor (Wright, 

2014; Crino , 2012), results differ by country and method. Some studies (Dixon, 2020; Koch et al., 2021) suggest low-

skilled workers benefit, but others (Acemoglu et al., 2020; Crino , 2012) show job losses. 

 

Trade's impact is similarly debated. Early research (Amiti and Wei, 2005; Michel and Rycx, 2012) found minimal labor 

effects, while later studies, such as Acemoglu et al. (2016) and Autor et al. (2021), attribute substantial U.S. job losses 

to Chinese imports. Yet other studies stress skill-level variation: Wright (2014) finds negative effects for low-skilled 

workers but small gains for high-skilled ones, and Crino  (2012) finds services offshoring complements high-skilled 

labor, while goods offshoring substitutes low-skilled labor. 
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Few studies consider trade and technology together. Autor et al. (2015) find trade reduces overall employment, while 

technology mainly alters job composition. Overall, research findings depend heavily on study design, sector, workforce 

skill levels, and measurement methods, highlighting the value of a meta-analysis to distil robust insights.  

 

 

The Meta-Regression Analysis 

To better understand how technology and trade affect jobs in advanced economies, we review and analyze findings 

from many existing studies. We follow a well-established four-step process to ensure a thorough and unbiased 

literature search. This process includes looking through peer reviewed academic papers, working paper series, and 

existing review articles. After reviewing over 1,300 studies, we narrowed our sample down to 56 high-quality studies 

that clearly measured how technology or trade impact employment. From each of these studies, we collect as many 

labor market impact estimates (employment elasticities) as possible. Employment elasticities measure the 

responsiveness of employment to changes in technology or trade. This resulted in nearly 400 estimates for technology 

and over 350 for trade. These numbers allow us to spot trends and differences across studies, such as the impact of 

trade or technology on low-, medium-, and high-skilled workers.  

 

Figure 1 shows the distribution of the technology elasticities (panel on the left) and the trade elasticities (panel on the 

right) as reported in the studies considered by skill level. The figure suggests that, on average, technology benefits both 

low- and high-skilled workers at the expense of medium-skilled workers, while trade positively affects high-skilled 

workers at the expense of both low- and medium-skilled workers.  

 

 
Figure 1. Distributions of estimated technology and trade elasticities by skill level 

 

 

 
 

 

 

 

However, Figure 1 is just summarizing the results of all studies considered, without accounting for differences across 

these studies. A proper meta-analysis is needed to resolve conflicting empirical findings (Doucouliagos et al., 2022). A 

meta-analysis identifies the most relevant factors that could explain differences between various studies and draws 

robust inferences from the evidence base. Think of issues such as the country under consideration, the time period 

considered, skill levels, the type of technological progress, the econometrics used, but also whether and where the 

study has been published. Figure 2 shows all these factors considered. 

 

Notes: Vertical lines inside the boxed indicate the median values by skill level (technology sample: 0.049 for low-skill, -0.072 for medium 

skill and 0.016 for high skill and trade sample: -0.010 for low-skill, -0.018 for medium skill and 0.133 for high skill). The median is the 

value for which 50% of the data lies on its left-hand side and 50% lies on the right-hand side. The left edge of the box represents the 

lower quartile, while the right edge of the box shows the upper quartile. The values at the extremes of the horizontal lines are the lowest 

and highest reported elasticities.  
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Figure 2. Study characteristics considered in the meta-regression analysis 
 

 
 

The Result 

Bayesian Model Averaging (BMA) approach implies that we estimate all possible combinations of variables considered 

and identify the “best” models based on the the posterior inclusion probability (PIP), measuring the importance of 

each variable. To interpret the PIP, we follow the thresholds used in the literature, suggesting that PIPs below 0.5 

suggest no significance. Table 1 reports the PIPs of the variables that have a PIP above 0.50. 

 

Our analysis shows that the impact of technology on employment differs across skill levels. According to the BMA 

results, the reported elasticities are 0.025 higher for low-skilled workers and 0.049 higher for high-skilled workers 

than those for medium-skilled workers. Our results also suggest that the employment elasticities of product innovation 

are 0.01 higher than those of process innovation. The BMA analysis also illustrates the importance of the model 

specification. First, when the model estimated includes a trade variable, the reported technology elasticity is 0.044 

larger, suggesting important complementarities between the technology and the trade effects. Similarly, estimating the 

model in levels leads to higher reported elasticities by 0.012 compared to first-differenced models. 

 

The impact of trade on employment also differs between different skill levels. The BMA results show that the reported 

elasticities are 0.095 lower for low-skilled workers, while the reported elasticities are 0.062 higher for high-skilled 

workers. Finally, our results show that the trade elasticities reported in models that include technology are larger by 

0.018.  

 

 

Sources of Variation

Variable 
definition

Technology

Product innovation,

process innovation

Trade

Trade in 
intermediates, 

trade in final goods

Data and 
estimation 

characteristics

Skill-level (low-
medium-, high-

skilled labor), Sector 
(manufacturing, 
services), Data 

aggregation 
(industry-, firm-, 

worker- or macro-
level)

Technology and trade, 
time series or cross-

section analysis, 
estimation in levels or 

first differences, 
estimating correlation or 

causality, number of 
variables, number of 

observations, including 
important control 

variables

Geography and 
time 

characteristics

European labor 
market or not, 

Spatial unit 
(national or 

regional analysis), 
Industrialized trade 
partner, midpoint 
and dataspan of 

the analysis 

Publication 
characteristics

Peer-reviewed 
journal or 

working paper, 
publication  

quality (impact 
factor) and year
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Table 1. Explaining the variation in the technology and trade meta-samples 
 

Response variable 
Technology 

PIP 

Trade 

PIP 

Product innovation 1.000  

Low skill 1.000 1.000 

Medium skill 1.000 1.000 

High skill 1.000 1.000 

Technology and trade 1.000 0.610 

Europe 1.000  

Industry level 1.000  

Estimation in levels 0.999  

Peer reviewed journal 0.998  

Firm level 0.988  

Data span 0.968  

Number of observations  0.955  

St. error 0.894  

Manufacturing 0.866  

Services 0.732 0.768 

Advanced  0.786 
Developing  0.917 
10-year impact factor of the 

journal 
 

0.583 

Studies 37 19 

Observations 397 355 

 
 

Best practice 

We can use the BMA estimates to come up with a synthetic estimate, often called ‘best practice’. We proceed in two 

steps. In the first step, we select variables to include in the best practice estimates. The BMA outcomes of Table 1 

provide the most relevant variables from which we can choose. The criteria for our most preferred methodology are 

as follows: First, our preferred methodology relates to models using first differences. Second, the model should include 

both technology and trade variables as well as important controls. Third, the preferred estimation strategy is to use 

time series with a time lag between the explanatory and the dependent variable and to use an instrumental variable 

approach to account for the endogeneity of technology and trade. We also assume that the trade takes place between 

a European and a developing economy. Finally, the primary study should have recently been published in a high quality 

peer-reviewed journal.  

 

In the second step, for each of the variables that we include in the synthetic estimate we multiply the estimated 

marginal effect of the variable with the maximum value of this variable in the technology or trade sample. For example, 

the maximum value of the 10-year impact factor of a journal in which a trade study has been published is 23.76 and 

this is multiplied with the estimated marginal effect according to the BMA, which amounts to -0.017. For explanatory 

variables that are dummy variables, the maximum value obviously is 1, which we multiply by the marginal effect.  

 

Figure 3 shows the outcomes of the ‘best practice’ estimates. Based on this figure, we draw the following conclusions. 

First, technology is employment-friendly, particularly when the full spectrum of study design characteristics is taken 

into account. Contrary to fears of mass job destruction, technology has contributed positively to labor demand in many 

settings—especially for high-skilled and, perhaps more surprisingly, low-skilled workers. Second, trade has more 

nuanced effects. Trade tends to displace low-skilled workers, especially in advanced economies engaging in vertical 

specialization with low-wage countries. 
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Figure 3. Best practice estimated technology and trade elasticities 
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