

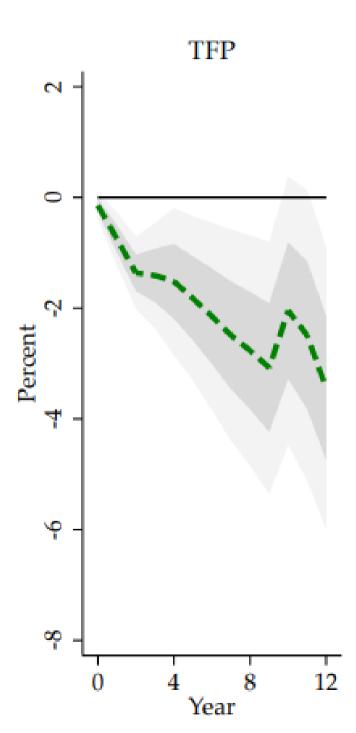
MONETARY POLICY AND STRUCTURAL TECTONIC SHIFTS

MONETARY POLICY AND PRODUCTIVITY: CHALLENGES AND TRADE-OFFS FOR CENTRAL BANKS

GALO NUÑO

ASSOCIATE DIRECTOR GENERAL FOR FINANCIAL STABILITY, REGULATION AND RESOLUTION BANCO DE ESPAÑA

22 MAY 2025


This presentation reflects my personal views and not necessarily those of Banco de España or the Eurosystem

AMPLE EMPIRICAL EVIDENCE SUPPORTING HOW CONTRACTIONARY MONETARY POLICY SHOCKS REDUCE TFP

- □ Ample literature showing that contractionary monetary policy shocks reduce TFP
 - Evans, 1992; Christiano et al., 2005; Garga and Singh, 2021; Jordà et al., 2020; Moran and Queralto, 2018; Meier and Reinelt, 2020; Baqaee et al., 2021).
- ☐ Different theoretical mechanisms:
 - R&D, markup heterogeneity, capital misallocation...
- What does it imply for the design of monetary policy?

Baseline response to 100 bps shock in Jordà et al. (2020)

TRADITIONAL MONETARY POLICY PRESCRIPTIONS

■ New Keynesian framework (workhorse model in central banks). Central bank minimizes an inflation-output gap objective

$$\varphi(x_t)^2 + (\pi_t)^2$$

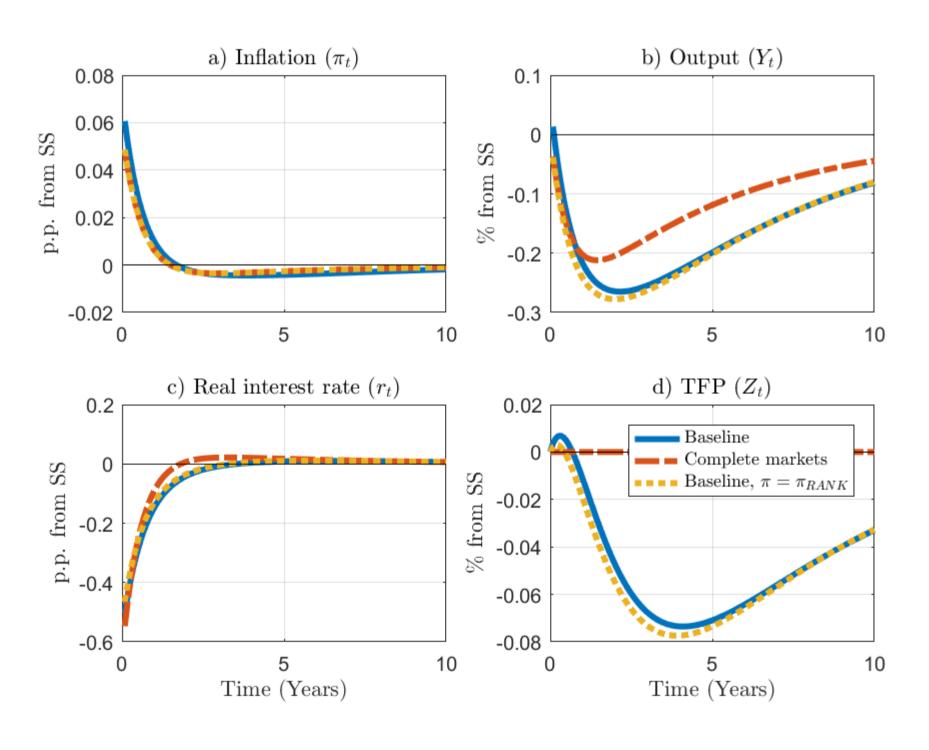
o x_t is output gap, π_t is inflation, and φ is a constant

- Optimal monetary policy
 - In response to demand shocks: divine coincidence (price stability)
 - In response to supply shocks: lean against the wind

OPTIMAL MONETARY POLICY WITH ENDOGENOUS TFP

☐ New Keynesian framework (workhorse model in central banks). Central bank minimizes

$$\varphi(x_t)^2 + (\pi_t)^2 + \mu(z_t)^2 - z_t$$


o z_t is TFP and μ is a constant

- ☐ The new extra terms reflect
 - Aversion to TFP volatility
 - Desire to increase TFP (new dynamic inconsistence motive)

1. THE CENTRAL BANK SHOULD LOOK THROUGH SUPPLY SHOCKS EVEN MORE

■ We consider a realistically-calibrated heterogenous-firm New Keynesian model in which TFP is endogenous due to capital misallocation

☐ Optimal policy response to cost-push shocks features higher inflation volatility in exchange for lower gap and TFP volatilities

Gonzalez, Nuño, Thaler, Albrizio (2023)

2. DIVINE COINCIDENCE IS NOT OPTIMAL ANYMORE IN RESPONSE TO DEMAND SHOCKS

□ Optimal policy response to **demand shocks** deviates from strict price stability

☐ It features higher inflation and gap volatilities in exchange for lower TFP volatility

Gonzalez, Nuño, Thaler, Albrizio (2023)

3. CHALLENGES FOR CENTRAL BANKS

- ☐ The real world is murkier than the New Keynesian model
 - Difficulty to identify demand and supply shocks (not only on real time but even a posteriori)
 - (Still) lack of knowledge about different channels through which monetary policy affects TFP, and how they interact with each other.
 - Monetary policy transmission (including lags) still subject to uncertainty
- ☐ Looking-through supply shocks has limitations
 - Unanchoring of inflation expectations, nonlinearity of Phillips curve
 - Strike the iron while it's hot (Karadi, Nakov, Nuño, Pasten and Thaler)
- ☐ Monetary policy may indirectly influence the natural rate via productivity growth

THANK YOU

BANCO DE ESPAÑA