|  | Empirical Analysis<br>0000 | Model<br>000 | Results<br>00 |  |
|--|----------------------------|--------------|---------------|--|
|  |                            |              |               |  |

# Energy Shocks, Consumption Disparities & The Inflation-Inequality Dilemma

Rosi Chankova Momo Komatsu

University of Oxford

SUERF/OeNB Vienna - May 2025

| Introduction<br>●O | Empirical Analysis<br>0000 | Model<br>000 | Results<br>00 |  |
|--------------------|----------------------------|--------------|---------------|--|
|                    |                            |              |               |  |

## Outline

#### Background:

- Energy prices are very volatile
- Extent to which households affected differs
- Periods of high energy prices see rise in direct financial relief to consumers
  - Tax rebates and credits (e.g. 2008 Economic Stimulus Act)
  - Subsidies and direct payments (e.g. COVID-19 Stimulus Checks)
  - Suspension of gas taxes (e.g. Maryland, Georgia)

#### **Research questions:**

- Distributional effect of energy shocks on consumption patterns?
- Impact of fiscal interventions targeted at low-income households?

| Introduction<br>○● |          | Empirical Analysis<br>0000 | Model<br>000 | Results<br>00 |  |
|--------------------|----------|----------------------------|--------------|---------------|--|
| Related li         | terature |                            |              |               |  |

**Impact of energy shocks:** Kilian (2008); Blanchard and Gali (2007); Hoang et al. (2019); Choi et al. (2018); Hooker (1996); Känzig (2021)

Heterogeneous agent literature: Bilbiie (2008, 2017); Debortoli and Galí (2018); Kaplan et al. (2018); Auclert (2019); Broer et al. (2020); Dolado et al. (2021)

**Energy shocks and fiscal policy:** Kharroubi and Smets (2014); Kröger et al. (2023); Meyimdjui and Combes (2021); Zhang et al. (2014); Jaravel and Olivi (2019)

#### Contribution:

- Estimate impact from energy shocks on consumption inequality
- Analyse implications of 'targeted' vs 'untargeted' transfers

| Stylized Facts |  |  |
|----------------|--|--|
| 000            |  |  |

## Low-income households are more vulnerable to energy shocks

Figure: Energy expenditure shares across income distribution in United States



Note: Red-dotted line shows mean expenditure share across entire income distribution for the full sample period (10.23%). Data source: CES.

315

イロト イヨト イヨト

| Stylized Facts |  |  |
|----------------|--|--|
| 000            |  |  |

Inflation rates between households can differ substantially

Define:  $\pi_{it} = \theta_{it}^E \pi_t^E + \theta_{it}^F \pi_t^F + \theta_{it}^G \pi_t^G + \theta_{it}^S \pi_t^S$  with  $\theta_{it}^x = \frac{\text{expenditure on } x_{it}}{\text{total expenditure}_{it}}$  for  $i = \{1, 10\}$ 

Figure: Inflation rates across low- and high income households



Note: Gray lines show inflation rates across deciles in the income distribution. Data sources: CES, BLS, BEA.

| Stylized Facts |  |  |
|----------------|--|--|
| 000            |  |  |

Strong correlation between energy inflation and inflation gap



Figure: Correlations between the inflation gap and...

Note: Full sample period. Inflation gap refers to top/bottom 20% of income earners. Pearson correlation included. Data sources: CES, BLS, BEA.

・ 同下 ・ ヨト ・ ヨト

|             | Empirical Analysis<br>●000 | Model<br>000 | Results<br>00 |  |
|-------------|----------------------------|--------------|---------------|--|
| Methodology |                            |              |               |  |

Instrumental variable local projections (Jordà, Schularick, and Taylor, 2015):

• Stage 1: Instrument energy prices with OPEC news shocks (Känzig, 2021)

$$\pi_t^E = \alpha_0 + \alpha_1 \text{Shock}_t + \sum_{j=0}^3 \Gamma' Z_{t-j} + u_t$$
(1)

with Z: real growth, unemployment, and world oil production.

• Stage 2: Group-Specific Consumption Responses  $\tilde{c}_{t+h}^{g} = \alpha^{g} + \beta_{h}^{g} \hat{\pi}_{t}^{E} + \gamma_{h}^{g} \pi_{t}^{g} + \zeta_{h}^{g} i_{t}^{g} + \sum_{j=1}^{3} \psi_{h,j}^{g} X_{t-j}^{g} + \sum_{j=0}^{3} \phi_{h,j}^{g} W_{t-j} + \epsilon_{t+h}^{g}$ (2)

with  $X^g$ :  $\tilde{c}^g, \pi^g, i^g$  and W: unemployment, interest rate.

Sample: 1994Q1-2023Q4.

|             | Empirical Analysis<br>●000 | Model<br>000 | Results<br>00 |  |
|-------------|----------------------------|--------------|---------------|--|
| Methodology |                            |              |               |  |

Instrumental variable local projections (Jordà, Schularick, and Taylor, 2015):

• Stage 1: Instrument energy prices with OPEC news shocks (Känzig, 2021)

$$\pi_t^E = \alpha_0 + \alpha_1 \text{Shock}_t + \sum_{j=0}^3 \Gamma' Z_{t-j} + u_t$$
(1)

with Z: real growth, unemployment, and world oil production.

• Stage 2: Group-Specific Consumption Responses  $\tilde{c}_{t+b}^{g} = \alpha^{g} + \beta_{b}^{g} \hat{\pi}_{t}^{E} + \gamma_{b}^{g} \pi_{t}^{g} + \zeta_{b}^{g} i_{t}^{g} + \sum^{3} \psi_{b}^{g} X_{t-i}^{g} + \sum^{3} \phi_{b}^{g} W_{t-i} + \epsilon_{t+b}^{g}$ 

$${}^{g}_{t+h} = \alpha^{g} + \beta^{g}_{h} \hat{\pi}^{E}_{t} + \gamma^{g}_{h} \pi^{g}_{t} + \zeta^{g}_{h} i^{g}_{t} + \sum_{j=1} \psi^{g}_{h,j} X^{g}_{t-j} + \sum_{j=0} \phi^{g}_{h,j} W_{t-j} + \epsilon^{g}_{t+h}$$
(2)

with  $X^g$ :  $\tilde{c}^g, \pi^g, i^g$  and W: unemployment, interest rate.

Sample: 1994Q1-2023Q4.

|  | Empirical Analysis |  |  |
|--|--------------------|--|--|
|  |                    |  |  |

Poor households reduce consumption, while rich households don't

Figure: Response of total consumption to energy shock



(a) All households

#### ・ロト・西ト・ヨト・ヨト 小口・

|  | Empirical Analysis |  |  |
|--|--------------------|--|--|
|  | 0000               |  |  |

Poor households reduce consumption, while rich households don't

Figure: Response of total consumption to energy shock



Note: Responses show percentage point deviations from the log-linear trend. Data sources: CES, BLS, BEA, Känzig (2021), FRED.

#### Chankova, R & Komatsu, M

#### SUERE/OeNB Vienna - May 2025 8 / 16

315

イロト イヨト イヨト

|  | Empirical Analysis |  |  |
|--|--------------------|--|--|
|  | 0000               |  |  |

## Beyond extremes: Consumption response declines with income

Figure: Contemporaneous impact of total consumption to energy shock (h = 0)



Note: Responses show percentage point deviations from the log-linear trend. Data sources: CES, BLS, BEA, Känzig (2021), FRED.

Impact over projection horizo

금기님

不得下 イヨト イヨト

| Introduction 3/0/2c0 racts Empirical Analysis Model Results Conclusion<br>00 000 000 000 000 000 000 000 000 |  | Empirical Analysis<br>000● | Model<br>000 | Results<br>00 |  |
|--------------------------------------------------------------------------------------------------------------|--|----------------------------|--------------|---------------|--|
|--------------------------------------------------------------------------------------------------------------|--|----------------------------|--------------|---------------|--|

## Not just how much, but what? Adjustments across categories

Figure: Response of consumption components to energy shock



Note: Responses show percentage point deviations from the log-linear trend. Data sources: CES, BLS, BEA, Känzig (2021), FRED.

315

・ 同下 ・ ヨト ・ ヨト

|  | Empirical Analysis<br>0000 | Model<br>●OO | Results<br>00 |  |
|--|----------------------------|--------------|---------------|--|
|  |                            |              |               |  |

## Model overview

New Keynesian model with:

- Two households: Constrained ( $\lambda$ ) and unconstrained ( $1 \lambda$ )
- Two sectors: 'Sticky rest' and 'less-sticky energy'
- Non-homothetic preferences: Heterogeneous consumption baskets

|  | Empirical Analysis<br>0000 | Model<br>O●O | Results<br>00 |  |
|--|----------------------------|--------------|---------------|--|
|  |                            |              |               |  |

## Household heterogeneity

Indirect utility function (Boppart, 2014) with non-homothetic preferences:

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\left\{\frac{1}{\varepsilon_{1}}\left[\left(\frac{S_{t}^{k}}{P_{Rt}}\right)^{\varepsilon_{1}}-1\right]-\frac{\gamma}{\varepsilon_{2}}\left[\left(\frac{P_{Et}}{P_{Rt}}\right)^{\varepsilon_{2}}-1\right]\right\},\qquad k\in\{c,u\}$$
(3)

where  $0 \leq \varepsilon_1 \leq \varepsilon_2 < 1$ ,  $\gamma > 0$ , and  $S_t^k$  is total spending

|  | Empirical Analysis<br>0000 | Model<br>O●O | Results<br>00 |  |
|--|----------------------------|--------------|---------------|--|
|  |                            |              |               |  |

## Household heterogeneity

Indirect utility function (Boppart, 2014) with non-homothetic preferences:

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\left\{\frac{1}{\varepsilon_{1}}\left[\left(\frac{S_{t}^{k}}{P_{Rt}}\right)^{\varepsilon_{1}}-1\right]-\frac{\gamma}{\varepsilon_{2}}\left[\left(\frac{P_{Et}}{P_{Rt}}\right)^{\varepsilon_{2}}-1\right]\right\},\qquad k\in\{c,u\}$$
(3)

where  $0 \leq \varepsilon_1 \leq \varepsilon_2 < 1$ ,  $\gamma > 0$ , and  $S_t^k$  is total spending

• Constrained:

$$S_t^c = W_t n_t^c + P_t \tau_t^c \tag{4}$$

• Unconstrained:

$$S_{t}^{u} = W_{t}n_{t}^{u} + P_{t}\tau_{t}^{u} + R_{t-1}B_{t} - B_{t+1} + \frac{1-\delta}{1-\lambda}P_{t}D_{t}$$
(5)

|               | Empirical Analysis<br>0000 | Model<br>○O● | Results<br>00 |  |
|---------------|----------------------------|--------------|---------------|--|
| Policy design |                            |              |               |  |

## Monetary policy

$$R_t = \frac{1}{\beta} \left( \frac{\Pi_t}{\bar{\Pi}} \right)^{\phi_{\pi}} \left( \frac{Y_t}{Y_t^n} \right)^{\phi_{\gamma}} S(\nu_t)$$
(6)

where  $\Pi_t = \lambda \Pi_t^c + (1 - \lambda) \Pi_t^u$ 

#### **Fiscal policy**

$$\tau_t^c = (1 - \tau) \,\delta D_t \tag{7}$$

$$\tau_t^u = \left(1 + \frac{\tau\lambda}{1 - \lambda}\right) \delta D_t \tag{8}$$

so that  $\lambda \tau^c_t + (1 - \lambda) \tau^u_t = \delta D_t$ 

|               | Empirical Analysis<br>0000 | Model<br>○O● | Results<br>00 |  |
|---------------|----------------------------|--------------|---------------|--|
| Policy design |                            |              |               |  |

## Monetary policy

$$R_t = \frac{1}{\beta} \left( \frac{\Pi_t}{\bar{\Pi}} \right)^{\phi_{\pi}} \left( \frac{Y_t}{Y_t^n} \right)^{\phi_{\gamma}} S(\nu_t)$$
(6)

where  $\Pi_t = \lambda \Pi_t^c + (1 - \lambda) \Pi_t^u$ 

#### **Fiscal policy**

$$\tau_t^c = (1 - \tau) \,\delta D_t \tag{7}$$

$$\tau_t^{\,\mu} = \left(1 + \frac{\tau\lambda}{1-\lambda}\right)\delta D_t \tag{8}$$

so that  $\lambda \tau^c_t + (1 - \lambda) \tau^u_t = \delta D_t$ 

| Introduction         Stylized Facts         Empirical Analysis         Model         Results         Conclusion           00         000         000         000         00         0 | Introduction | Stylized Facts | Empirical Analysis | Model | Results | Conclusion |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------------|-------|---------|------------|
|                                                                                                                                                                                       | OO           | 000            | 0000               | OOO   | ●O      | O          |

#### Figure: Negative energy supply shock



Note: IRFs show percentage point deviations from steady state.

(비) (종) (종) (종) (종) (비)

|  |  | Results |  |
|--|--|---------|--|
|  |  | 00      |  |

## 'Targeted' transfers: tradeoff between inequality and inflation

#### Figure: 'Untargeted' fiscal policy vs 'Targeted' fiscal policy



Note: IRFs show percentage point deviations from steady state.

|  |  | Results |  |
|--|--|---------|--|
|  |  | 00      |  |

## 'Targeted' transfers: tradeoff between inequality and inflation

#### Figure: 'Untargeted' fiscal policy vs 'Targeted' fiscal policy



Note: IRFs show percentage point deviations from steady state.

315

イロト イボト イヨト

|            | Empirical Analysis<br>0000 | Model<br>000 | Results<br>00 | Conclusion |
|------------|----------------------------|--------------|---------------|------------|
| Conclusion |                            |              |               |            |

## Key results:

- Aggregate consumption falls, while consumption inequality rises after energy shock
- Decline in consumption of low-income households, no impact for high-income households
- Main adjustment via 'core' and energy expenditure
- 'Targeted' transfers reduce consumption inequality, but fuel inflation and interest rates (trade-off)

#### Next steps:

- Finish calibration using empirical IRFs
- Strengthen fiscal policy analysis

# Data: Consumption Expenditure Survey (CES)

- Consumption expenditures from CE-Public Use Microdata (BLS)
- Detailed "Interview survey" with income, expenditure (1000+ categories), savings, debt, hours worked, socioeconomic characteristics, etc.
- $\bullet$  5-7k observations each quarter from 1986-Q1 to 2023-Q1  $\rightarrow$  around 860k obs.
- Rotating panel survey: New households sampled every quarter and each household tracked up to four consecutive quarters
- Aggregate into percentiles and look at sample means each quarter

Back

Appendix

## Expenditure shares for energy are generally stable over time

Figure: Energy expenditure shares across income deciles



Data sources: CES, BLS.

Back

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回日 のへで

# Calibration

| Parameter                  | Description                                     | Value |
|----------------------------|-------------------------------------------------|-------|
| Households                 |                                                 |       |
| $\lambda$                  | Fraction of constrained households              | 0.2   |
| $\gamma$                   | Energy share in consumption basket              | 0.10  |
| $\varepsilon_1$            | Non-homotheticity parameter                     | 0.65  |
| $\varepsilon_2$            | Non-homotheticity parameter                     | 0.65  |
| $\beta$                    | Discount factor                                 | 0.99  |
| $\epsilon$                 | Elasticity of substitution between core goods   | 9     |
| Firms                      |                                                 |       |
| $\theta_p^R$               | Calvo parameter price stickiness, core sector   | 0.75  |
| $\theta_{P}^{F}$           | Calvo parameter price stickiness, energy sector | 0.25  |
| $\rho_{a_F}$               | Technology shock persistence, energy sector     | 0.5   |
| Monetary and fiscal policy |                                                 |       |
| $\phi_{\pi}$               | Taylor-coefficient on inflation                 | 1.5   |
| $\phi_{y}$                 | Taylor-coefficient on output                    | 0.125 |
| $\check{\delta}$           | Tax rate on firms' profits                      | 0.266 |
| au                         | Fiscal policy rule                              | 1     |

## Beyond extremes: Consumption response declines with income

Figure: Response of total consumption to energy shock



Note: Responses show percentage point deviations from the log-linear trend. Data sources: CES, BLS, BEA, Känzig (2021), FRED.