Intelligent financial system: How AI is transforming finance*

I Aldasoro (BIS), L Gambacorta (BIS), A Korinek (U of Virginia), V Shreeti (BIS) and M Stein (U of Oxford)
20 June 2024, SUERF-Unicredit workshop, Vienna

*Views are the authors’ and not necessarily of the BIS
Overview

❖ Finance through the lens of information processing.

❖ Opportunities & challenges of AI in finance.

❖ Financial stability and the real economy.

❖ Implications for regulation.
The role of the financial sector
The role of the financial sector
The role of the financial sector

Dispersed information → Financial sector
The role of the financial sector

Dispersed information → Financial sector → Price signals
The role of the financial sector

Dispersed information → Financial sector → Price signals

BIS
The role of the financial sector

- Dispersed information
- Financial sector
- Price signals
- Allocation of scarce resources
The role of the financial sector

Finance as the **brain** of the economy: enables efficient flow of capital, manages risk, maintains liquidity.
Finance and the evolution of information processing technology

Ancient Sumerians developed the abacus to address financial needs.
Finance and the evolution of information processing technology

Ancient Sumerians developed the abacus to address financial needs.

Code of Hammurabi laid out laws to govern financial transactions.
Finance and the evolution of information processing technology

Ancient Sumerians developed the abacus to address financial needs.

Code of Hammurabi laid out laws to govern financial transactions.

Double-entry book keeping expanded commerce and finance.
Finance and the evolution of information processing technology

Ancient Sumerians developed the abacus to address financial needs.

Code of Hammurabi laid out laws to govern financial transactions.

Double-entry book keeping expanded commerce and finance.

History of computation and information processing intertwined with history of commerce and finance.
The journey to modern AI

Financial sector among the first to adopt and use the earliest **computers** (e.g. IBM 650).
The journey to modern AI

Financial sector among the first to adopt and use the earliest **computers** (e.g. IBM 650).

Earliest AI, **rule-based expert systems** led to efficiency improvements in finance & shaped tech development.
The journey to modern AI

Financial sector among the first to adopt and use the earliest **computers** (e.g. IBM 650).

Earliest AI, **rule-based expert systems** led to efficiency improvements in finance & shaped tech development.

Machine learning quick to be adopted in finance though limited by computation power.
The journey to modern AI

Financial sector among the first to adopt and use the earliest **computers** (e.g. IBM 650).

Earliest AI, **rule-based expert systems** led to efficiency improvements in finance & shaped tech development.

Machine learning quick to be adopted in finance though limited by computation power.

New frontier for finance is **generative AI**. Vast potential, new risks?
Decoding AI: what’s new for the financial sector?

- What are the emerging opportunities and challenges of using Gen AI in banking and finance?
Decoding AI: what’s new for the financial sector?

- What are the emerging opportunities and challenges of using Gen AI in banking and finance?

- How can AI impact financial stability?
Decoding AI: what’s new for the financial sector?

❖ What are the emerging opportunities and challenges of using Gen AI in banking and finance?

❖ How can AI impact financial stability?

❖ What is the role of spillovers from the real economy for the financial sector?
Decoding AI: what’s new for the financial sector?

- What are the emerging opportunities and challenges of using Gen AI in banking and finance?
- How can AI impact financial stability?
- What is the role of spillovers from the real economy for the financial sector?
- Does financial regulation need to be adapted to the ongoing advancements in AI?
Decoding AI: what’s new for the financial sector?

❖ What are the emerging opportunities and challenges of using Gen AI in banking and finance?

❖ How can AI impact financial stability?

❖ What is the role of spillovers from the real economy for the financial sector?

❖ Does financial regulation need to be adapted to the ongoing advancements in AI?
Opportunities of AI in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rule-based risk analysis, greater competition</td>
<td>Risk management, portfolio optimization, HF trading</td>
<td>Fraud detection</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Credit risk analysis, lower underwriting costs, financial inclusion</td>
<td>Insurance risk analysis, lower processing costs, fraud detection</td>
<td>Analysis of new data sources, HF trading</td>
<td>New liquidity management tools, fraud detection and AML</td>
</tr>
<tr>
<td>Generative AI</td>
<td>Enhanced credit scoring (unstructured data), easier back-end processing, better customer support</td>
<td>Better risk analysis with newly legible data, easier compliance</td>
<td>Robo-advising, asset embedding, new products, customer service</td>
<td>Enhanced KYC and AML processes</td>
</tr>
</tbody>
</table>
Opportunities of AI in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rule-based risk analysis, greater competition</td>
<td>Risk management, portfolio optimization, HF trading</td>
<td>Fraud detection</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Credit risk analysis, lower underwriting costs, financial inclusion</td>
<td>Insurance risk analysis, lower processing costs, fraud detection</td>
<td>Analysis of new data sources, HF trading</td>
<td>New liquidity management tools, fraud detection and AML</td>
</tr>
<tr>
<td>Generative AI</td>
<td>Enhanced credit scoring (unstructured data), easier back-end processing, better customer support</td>
<td>Better risk analysis with newly legible data, easier compliance</td>
<td>Robo-advising, asset embedding, new products, customer service</td>
<td>Enhanced KYC and AML processes</td>
</tr>
</tbody>
</table>
Opportunities of AI in Finance

<table>
<thead>
<tr>
<th>Traditional analytics</th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-based risk analysis, greater competition</td>
<td>Risk management, portfolio optimization, HF trading</td>
<td>Fraud detection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Machine learning

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit risk analysis, lower underwriting costs, financial inclusion</td>
<td>Insurance risk analysis, lower processing costs, fraud detection</td>
<td>Analysis of new data sources, HF trading</td>
<td>New liquidity management tools, fraud detection and AML</td>
<td></td>
</tr>
</tbody>
</table>

Generative AI

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced credit scoring (unstructured data), easier back-end processing, better customer support</td>
<td>Better risk analysis with newly legible data, easier compliance</td>
<td>Robo-advising, asset embedding, new products, customer service</td>
<td>Enhanced KYC and AML processes</td>
<td></td>
</tr>
</tbody>
</table>
Opportunities of AI in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rule-based risk analysis, greater competition</td>
<td>Risk management, portfolio optimization, HF trading</td>
<td>Fraud detection</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Credit risk analysis, lower underwriting costs, financial inclusion</td>
<td>Insurance risk analysis, lower processing costs, fraud detection</td>
<td>Analysis of new data sources, HF trading</td>
<td>New liquidity management tools, fraud detection and AML</td>
</tr>
<tr>
<td>Generative AI</td>
<td>Enhanced credit scoring (unstructured data), easier back-end processing, better customer support</td>
<td>Better risk analysis with newly legible data, easier compliance</td>
<td>Robo-advising, asset embedding, new products, customer service</td>
<td>Enhanced KYC and AML processes</td>
</tr>
</tbody>
</table>
Challenges arising from AI use in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rigid, requires extensive human supervision, small number of parameters</td>
<td>Zero-sum arms race for private gains, flash crashes</td>
<td>Technical vulnerabilities</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Black box mechanisms, algorithmic discrimination, threats to consumer privacy, emergence of data silos</td>
<td>Zero-sum arms race for private gains, model herding, algorithmic coordination</td>
<td>New liquidity crises, increased cyber risks</td>
<td></td>
</tr>
<tr>
<td>Generative AI</td>
<td>Hallucinations in customer facing applications, garbage-in-garbage-out, increased market concentration, increased consumer privacy concerns, collusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges arising from AI use in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rigid, requires extensive human supervision, small number of parameters</td>
<td>Zero-sum arms race for private gains, flash crashes</td>
<td>Technical vulnerabilities</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Black box mechanisms, algorithmic discrimination, threats to consumer privacy, emergence of data silos</td>
<td>Zero-sum arms race for private gains, model herding, algorithmic coordination</td>
<td>New liquidity crises, increased cyber risks</td>
<td></td>
</tr>
<tr>
<td>Generative AI</td>
<td>Hallucinations in customer facing applications, garbage-in-garbage-out, increased market concentration, increased consumer privacy concerns, collusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges arising from AI use in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rigid, requires extensive human supervision, small number of parameters</td>
<td>Zero-sum arms race for private gains, flash crashes</td>
<td>Technical vulnerabilities</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Black box mechanisms, algorithmic discrimination, threats to consumer privacy, emergence of data silos</td>
<td>Zero-sum arms race for private gains, model herding, algorithmic coordination</td>
<td>New liquidity crises, increased cyber risks</td>
<td></td>
</tr>
<tr>
<td>Generative AI</td>
<td>Hallucinations in customer facing applications, garbage-in-garbage-out, increased market concentration, increased consumer privacy concerns, collusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges arising from AI use in finance

<table>
<thead>
<tr>
<th></th>
<th>Financial intermediation</th>
<th>Insurance</th>
<th>Asset management</th>
<th>Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional analytics</td>
<td>Rigid, requires extensive human supervision, small number of parameters</td>
<td>Zero-sum arms race for private gains, flash crashes</td>
<td>Technical vulnerabilities</td>
<td></td>
</tr>
<tr>
<td>Machine learning</td>
<td>Black box mechanisms, algorithmic discrimination, threats to consumer privacy, emergence of data silos</td>
<td>Zero-sum arms race for private gains, model herding, algorithmic coordination</td>
<td>New liquidity crises, increased cyber risks</td>
<td></td>
</tr>
<tr>
<td>Generative AI</td>
<td>Hallucinations in customer facing applications, garbage-in-garbage-out, increased market concentration, increased consumer privacy concerns, collusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Early rule-based systems were already important for financial stability: 1987 US stock market crash.
Financial stability and AI

Early rule-based systems were already important for financial stability: 1987 US stock market crash

Machine learning increases network interconnectedness, data uniformity, model herding.
Financial stability and AI

Early rule-based systems were already important for financial stability: 1987 US stock market crash

Machine learning increases network interconnectedness, data uniformity, model herding.

Gen AI leads to the fat tail problem, third party dependencies, model herding and uniformity,
Spillovers from the real economy
Spillovers from the real economy

AI adoption

Positive productivity shock and small labor market disruptions
Spillovers from the real economy

AI adoption → Positive productivity shock and small labor market disruptions → Limited financial stability concerns
Spillovers from the real economy

Optimistic scenario

Positive productivity shock and small labor market disruptions

Limited financial stability concerns

AI adoption
Spillovers from the real economy

Optimistic scenario

Positive productivity shock and small labor market disruptions

Limited financial stability concerns

AI adoption

AGI, massive labor market disruption, redistribution of wealth and income
Spillovers from the real economy

AI adoption

Optimistic scenario

Positive productivity shock and small labor market disruptions

Limited financial stability concerns

AGI, massive labor market disruption, redistribution of wealth and income

Defaults, financial instability
Spillovers from the real economy

Optimistic scenario
Positive productivity shock and small labor market disruptions

Limited financial stability concerns

Disruptive scenario
AGI, massive labor market disruption, redistribution of wealth and income

Defaults, financial instability
Spillovers from the real economy

Optimistic scenario
- Positive productivity shock and small labor market disruptions
- Limited financial stability concerns

Disruptive scenario
- AGI, massive labor market disruption, redistribution of wealth and income
- Defaults, financial instability

Land in the middle?
Upgrading financial regulation for AI

- Social and environmental well-being

*Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation

- Social and environmental well-being
- Transparency and accountability

Regulatory models for AI*

International cooperation

*Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection

Regulatory models for AI*

International cooperation

*Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight

Regulatory models for AI

International cooperation

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI*

International cooperation

*Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation

- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI*

- Market driven with a focus on self regulation and innovation

International cooperation

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation

- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI

- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports

International cooperation

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI
- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports
- Rights-driven with a focus on individual and social rights

International cooperation

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI
- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports
- Rights-driven with a focus on individual and social rights
- Not mutually exclusive

International cooperation

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI
- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports
- Rights-driven with a focus on individual and social rights
- Not mutually exclusive

International cooperation
- Global cooperation on AI regulation is crucial

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation

- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI

- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports
- Rights-driven with a focus on individual and social rights
- Not mutually exclusive

International cooperation

- Global cooperation on AI regulation is crucial
- Harmonise regulatory standards and governance rules

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI
- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports
- Rights-driven with a focus on individual and social rights
- Not mutually exclusive

International cooperation
- Global cooperation on AI regulation is crucial
- Harmonise regulatory standards and governance rules
- Transfer of knowledge and uniform risk assessment

Based on Bradford (2023)
Upgrading financial regulation for AI

Principles for AI regulation
- Social and environmental well-being
- Transparency and accountability
- Fairness and privacy protection
- Safety and human oversight
- Robustness and reliability

Regulatory models for AI
- Market driven with a focus on self regulation and innovation
- State-driven with a focus on political objectives and technology exports
- Rights-driven with a focus on individual and social rights
- Not mutually exclusive

International cooperation
- Global cooperation on AI regulation is crucial
- Harmonise regulatory standards and governance rules
- Transfer of knowledge and uniform risk assessment
- Prevent regulatory arbitrage

*Based on Bradford (2023)
Thank you! Questions?
Vatsala.Shreeti@bis.org
Using AI for prudential policy

Microprudential policy

- Supervision of individual financial institutions.
- AI powerful for recognizing patterns in large volumes of cross-sectional data.
- Better risk assessment, spotting market manipulation.
- Easier regulatory reporting and compliance for firms.
- Risks: explainability, bias, privacy

Macroprudential policy

- Supervision of the financial system as a whole.
- AI less effective to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-unknowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

<table>
<thead>
<tr>
<th>Microprudential policy</th>
<th>Macroprudential policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Supervision of individual financial institutions.</td>
<td>- Supervision of the financial system as a whole.</td>
</tr>
<tr>
<td>- AI powerful for recognizing patterns in large volumes of cross-sectional data.</td>
<td>- AI less effective to spot and measure systemic risk without human judgement.</td>
</tr>
<tr>
<td>- Better risk assessment, spotting market manipulation.</td>
<td>- Financial crises are unique and rare – data availability is limited.</td>
</tr>
<tr>
<td>- Easier regulatory reporting and compliance for firms.</td>
<td>- The problem of “unknown-unknowns.”</td>
</tr>
<tr>
<td>- Risks: explainability, bias, privacy</td>
<td>- Future advances in AI may open up new avenues.</td>
</tr>
</tbody>
</table>
Using AI for prudential policy

Microprudential policy
- Supervision of **individual** financial institutions.
- AI powerful for recognizing patterns in large volumes of **cross-sectional** data.
- Better risk assessment, spotting market manipulation.
- Easier regulatory reporting and compliance for firms.
- Risks: explainability, bias, privacy

Macroprudential policy
- Supervision of the financial system as a whole.
- AI less effective to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-unknowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy

- Supervision of *individual* financial institutions.
- AI powerful for recognizing patterns in large volumes of *cross-sectional* data.
- Better *risk assessment*, spotting *market manipulation*.
- Easier regulatory reporting and compliance for firms.
- Risks: explainability, bias, privacy

Macroprudential policy

- Supervision of the financial system as a whole.
- AI less effective to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-knowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy

- Supervision of *individual* financial institutions.

- AI powerful for recognizing patterns in large volumes of *cross-sectional* data.

- Better *risk assessment*, spotting *market manipulation*.

- Easier regulatory *reporting and compliance* for firms.

- Risks: explainability, bias, privacy

Macropudential policy

- Supervision of the financial system as a whole.

- AI less effective to spot and measure systemic risk without human judgement.

- Financial crises are unique and rare – data availability is limited.

- The problem of “unknown-unknowns.”

- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy
- Supervision of *individual* financial institutions.
- AI powerful for recognizing patterns in large volumes of *cross-sectional* data.
- Better *risk assessment*, spotting *market manipulation*.
- Easier regulatory *reporting and compliance* for firms.
- **Risks:** explainability, bias, privacy

Macroprudential policy
- Supervision of the financial system as a whole.
- AI less effective to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-unknowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy

- Supervision of *individual* financial institutions.
- AI powerful for recognizing patterns in large volumes of *cross-sectional* data.
- Better *risk assessment*, spotting *market manipulation*.
- Easier regulatory *reporting and compliance* for firms.
- *Risks*: explainability, bias, privacy

Macroprudential policy

- Supervision of the *financial system* as a whole.
- AI less effective to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-unknowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy
- Supervision of **individual** financial institutions.
- AI powerful for recognizing patterns in large volumes of **cross-sectional** data.
- Better **risk assessment**, spotting **market manipulation**.
- Easier regulatory **reporting and compliance** for firms.
- Risks: explainability, bias, privacy

Macroprudential policy
- Supervision of the **financial system** as a whole.
- AI **less effective** to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-unknowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy

- Supervision of individual financial institutions.
- AI powerful for recognizing patterns in large volumes of cross-sectional data.
- Better risk assessment, spotting market manipulation.
- Easier regulatory reporting and compliance for firms.
- Risks: explainability, bias, privacy

Macroprudential policy

- Supervision of the financial system as a whole.
- AI less effective to spot and measure systemic risk without human judgement.
- Financial crises are unique and rare – data availability is limited.
- The problem of “unknown-unknowns.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy
- Supervision of *individual* financial institutions.
- AI powerful for recognizing patterns in large volumes of *cross-sectional* data.
- Better *risk assessment*, spotting *market manipulation*.
- Easier regulatory *reporting and compliance* for firms.
- **Risks**: explainability, bias, privacy

Macroprudential policy
- Supervision of the *financial system* as a whole.
- AI *less effective* to spot and measure systemic risk without human judgement.
- Financial crises are *unique and rare* – data availability is limited.
- The problem of “*unknown-unknowns*.”
- Future advances in AI may open up new avenues.
Using AI for prudential policy

Microprudential policy
- Supervision of *individual* financial institutions.
- AI powerful for recognizing patterns in large volumes of *cross-sectional* data.
- Better *risk assessment*, spotting *market manipulation*.
- Easier regulatory *reporting and compliance* for firms.
- **Risks**: explainability, bias, privacy

Macroprudential policy
- Supervision of the *financial system* as a whole.
- AI *less effective* to spot and measure systemic risk without human judgement.
- Financial crises are *unique and rare* – data availability is limited.
- The problem of “*unknown-unknowns*.”
- Future advances in AI may open up *new avenues*, especially with new types of data.