“The return of inflation and inflation risks”

Juan Angel Garcia, Ricardo Gimeno, Piers Hinds, Haozhe Su and Michael V. Tretyakov

Juan Angel Garcia
European Central Bank

The views expressed here are our own and do not necessarily reflect those of the ECB or the Bank of Spain.
Outline

1. Motivation
2. Main takeaways
3. Inflation RNDs: Empirical approach
4. Inflation risks in the euro area and the U.S.
5. Robustness checks and additional considerations
6. Concluding remarks
Motivation

- Inflation has fluctuated significantly off target over recent years

- Standard measures of inflation expectations provide information on central scenarios for the inflation outlook...

- ...but economic decisions would benefit from additional information about probabilities for alternative outcomes surrounding central scenarios

 ➔ evidence on inflation risks across horizons can help assess
 (i) how persistent inflation shocks will be
 (ii) challenges to price stability over the medium term
Inflation and inflation expectations: overview

Euro area

U.S.

Garcia et al. (2024), Inflation risks
This paper

Goal: explore the information content of the term structure of inflation risks
(based on inflation options market, risk-neutral measures)

What we do:

• use a robust methodology for estimating inflation RNDs
• gauge inflation risks at short (2y), medium (5y) and long-term (5y5y) horizons
• explore the dynamics of inflation risks in the euro area and the U.S. since 2009
• assess risks to price stability posed by the 2022-24 inflation overshooting episode

Part of a still limited but growing literature using the inflation options market data
(Kitsul and Wright, JFE 2013; Gimeno and Ibanez, JIMF 2018, Hilscher et al. 2022, among others)
Main takeaways

Inflation RNDs provide important insights

- monitoring risks at different horizons
- persistence of inflation shocks
- novel information about inflation expectations formation

Significant differences between euro area and US inflation risks

- distinct challenges to price stability
- different dynamics of inflation risks since GFC

Challenges to price stability over the recent inflation surge appear contained

- receding fast in the euro area, somewhat less so in the U.S.
- but close monitoring warranted

Garcia et al. (2024), Inflation risks
Gauging inflation risks: estimation approach

- **Data**
 - Strike prices of inflation caps (0.5%, 1.0%, ..., 6.0% strikes) **and floors** (-3.0%, -2.5%, ..., 3.0%)
 - Cleaned considering market activity and regularity conditions (e.g. price monotonicity)
 - ILS rates and OIS rates

- **Spot inflation RNDs** (for traded horizons, e.g. 2y, 5y, 10y)
 - Spline interpolation and extrapolation in volatility space (satisfying no-arbitrage)
 - Non-parametric approach (allowing for asymmetry and fat tails)

- **Forward inflation RNDs** (for non-traded horizons of interest, e.g. 3y2y, 5y5y RND)
 - Student t-copula to model relationship between spot RNDs
 - 2-parameter for more flexibility (tail dependence) and good data fitting
Term structure of inflation risks: euro area RNDs

Garcia et al. (2024), Inflation risks
Term structure of inflation risks: euro area tail risks and BoR

Risks to price stability across horizons
BoR = Prob (\(\pi > 2\%\)) - Prob (\(\pi < 2\%\))
Term structure of inflation risks: **US RNDs**

Garcia et al. (2024), Inflation risks
Term structure of inflation risks: US tail risks and BoR

Risks to price stability across horizons

\[\text{BoR} = \text{Prob} (\pi > 2\%) - \text{Prob} (\pi < 2\%) \]

Garcia et al. (2023), Inflation risks
The dynamics of inflation risks

Metric: evolution of pass-through β_t

from (i) inflation
(ii) short-term inflation expectations
(iii) short/medium term inflation risks
to medium/long-term inflation risks

Formally

$$\Delta risk_t^{LT} = \alpha + \beta_t \Delta \pi_t^{e(ST)} + \nu_t$$

$$\beta_t = \beta_{t-1} + \eta_t$$

$$\nu_t \sim N(0, e^{h_t})$$
$$h_t = h_{t-1} + \eta_h$$
$$\eta_h \sim N(0, \sigma_{h_i}^2)$$

(following e.g. Jochmann, Koop and Potter (2010) and Chan (2013))
A closer look at inflation dynamics and pass-through: **EA risks (MT and LT)**

UCSV inflation decomposition: $\pi_t = \pi^*_t + c_t$

Garcia et al. (2024), Inflation risks
A closer look at inflation dynamics and pass-through: **US risks (MT and LT)**

UCSV inflation decomposition: $\pi_t = \pi_t^* + c_t$

Garcia et al. (2024), Inflation risks
Short-term expectations pass-through on inflation risks (MT and LT): EA/US

Garcia et al. (2024), Inflation risks
Entrenchment of inflation risks: short-term pass-through (MT and LT): EA / US

Garcia et al. (2024), Inflation risks
Robustness checks and additional remarks

on past-through windows

• key findings robust to alternative windows (6 months vs 3m & 12m)

on forward RNDs (T-copula for long-term forward RND, 5y5y)

• stylised facts robust to alternative calibration windows (100 days vs 45d &150d)
• T-copula provides better fitting than Gaussian and Grouped T-copula

on risk-neutral vs “objective” inflation probabilities

• inflation risk premium also relevant for monetary policy (e.g. Kocherlakota, 2013)
• model-free objective densities very limited, model-based needed for long-term
• joint modelling potentially more promising
Concluding remarks

- inflation RNDs offer important insights on the inflation outlook

- traded inflation options can be used to gauge inflation risks across horizons (short, medium and long horizons)

- there are significant differences between EA and US inflation risks in the 2010s

- More recently, the pass-through from short-term expectations and risks suggests
 - risks to price stability seem to be relatively contained on both sides of the Atlantic
 - but close monitoring is warranted
Thanks for your attention!