Model

Results

Conclusions

Appendix

Housing and the secular decline in real interest rates

Markus Knell

Oesterreichische Nationalbank

"Equilibrium Real Interest Rates — concepts, current and future drivers: New insights and policy implications", SUERF/OeNB Workshop, Vienna, 7th December 2023

*The content of these slides reflects the views of the authors and not necessarily those of the OeNB.

Model	Results	Conclusions

- Laubach/Williams (2003): Decrease for the United States since 1980: around 3%.
- Rachel/Summers(2019): Decrease for advanced economies since 1970: around 3%.

Explanations for the decline in real interest rates

- Demographic aging increased the need for old age provision (Eggertson et al., 2019; Auclert et al., 2021)
- Increasing income inequality and the "saving glut of the rich" (Mian et al., 2020)
- Global saving glut and safe assets shortage (Bernanke, 2005; Caballero et al., 2017)
- Calibrated models confirm the importance of these factors:
 - Mankiw (2022): A simple Solow model with only s and g + n
 - Rachel/Summers (2019): A Blanchard/Yaari/Gertler model
 - Platzer/Peruffo (2022): A large-scale model

This paper

- Study a model that includes an asset in fixed supply (land/housing).
- The model (based on Piketty, 2011) is stylized in order to provide intuition and (under certain conditions) closed-form solutions: deterministic, real-term, closed economy, focus on steady-state comparisons.
- Main questions: Does the existence of housing ...
 - dampen the fall in interest rates (by absorbing excess savings)?
 - change the relative importance of the different channels?
 - help to explain other stylized facts?

Other important long-run trends

Private wealth-income ratios:

300% (1980) \rightarrow 540% (2018)

Share of housing wealth:

 $36\% (1970) \rightarrow 53\% (2015)$

 Other: Inheritance flows, saving rates, volume of mortgages, inequality, ...

Sources: Piketty/Zucman (2014), Wealth Inequality Report (2018), Bauluz/Novokmet/Schularick (2022)

Model

Results

Conclusions

Appendix

Benchmark model

- I consider a structure with four groups (*r*, *om*, *oo*, *w*):
 - Renters
 - Owner-occupiers with mortgage
 - Outright owners (without a mortgage)
 - Top 1% (outright owners, higher bequest motive)
- Model assumptions:
 - Owners with mortgages continuously refinance their purchases (no transaction costs)
 - Outright owners inherit a certain house and pass it on to their children who do the same....

Short-cut for:

- Houses that people are not *allowed* to sell (trusts etc.)
- Houses that people are not willing to sell ("old family property" etc.)
- Sluggishness over the lifecycle ("aging in place" etc.)

Model

Results

Conclusions

Appendix

Equilibrium interest rate

- Asset supply (=Wealth demand):
 - Physical capital K_t
 - Houses $\overline{H}_t (= \overline{H}_t' + \overline{H}_t^{om} + \overline{H}_t^{oo} + \overline{H}_t^w)$
 - Government bonds D_t
- Asset demand (=Wealth supply):
 - By households with a life-cycle and a bequest motive
- Write the wealth-to-income ratio as $\beta \equiv \frac{\text{Wealth}_t}{\text{NDP}_t}$ (and $\beta_Z = \frac{Z_t}{\text{NDP}_t}$ for asset Z_t) • National accounting
- The equilibrium interest rate r* solves:

$$\underbrace{\beta = \beta_{\mathcal{K}} + \beta_{\mathcal{H}r} + \beta_{\mathcal{H}om} + \beta_{D}}_{\text{Wealth Demand}} = \underbrace{\widetilde{\beta}}_{\text{Wealth Supply}}$$

€NB

Model •0 Results

Conclusions

Appendix

Demography

- Continuous-time OLG model. Individuals ...
 - become adults at age A,
 - are employed until retirement at age R,
 - die at age D,
 - receive a bequest at age I (with $A \leq I \leq R$),
 - receive a pension with net replacement rate ho after retirement.
- Each cohort born in time x has a size N^x = N⁰e^{nx} and includes a continuum i ∈ [0, 1] of individuals.

€NB

Warm-glow model

Lifetime utility $V^{j}(A)$ for group $j \in \{r, om, oo, w\}$ consists of:

Intratemporal function:

Model

$$\frac{u^{j}(a)}{(\gamma)^{\gamma}(1-\gamma)^{1-\gamma}} \rightarrow \text{ determines } P^{r}_{st} \text{ and } P^{o}_{st}$$

Intertemporal function:

$$U^{j}(A) = \left\{ \frac{\int_{A}^{D} e^{-\theta(a-A)} \left(u^{j}(a) \right)^{1-\sigma} \mathrm{d}a}{\int_{A}^{D} e^{-\theta(a-A)} \mathrm{d}a} \right\}^{\frac{1}{1-\sigma}}$$

<u>Intergenerational</u> function:

$$V^{j}(A) = (1 - s_{B}^{j}) \log \left(\frac{U^{j}(A)}{D} \right) + s_{B}^{j} \log \left(w^{j}(D) \right)$$

- Determines β depending on two crucial savings motives:
 - A life-cycle motive (for net replacement rate ho < 1):
 - A bequest motive (for $s_B^j > 0$).

Model • 000 Results

Conclusions

Appendix

Production

• Output of "normal" (non-housing) goods and services:

$$Y_{Nt} = K_t^{lpha} (\mathcal{A}_t L_t)^{1-lpha}$$

- Productivity A_t grows at rate g, labor supply L_t at rate n.
- Factor markets are competitive.
- The net return on capital:

$$r_{kt} = \alpha \frac{Y_{Nt}}{K_t} - \delta_k$$

• The capital-to-income ratio in steady state (with $r_{kt} = r_k$):

$$\beta_{K}^{N} \equiv \frac{K_{t}}{Y_{Nt}} = \frac{\alpha}{r_{k} + \delta_{k}}$$

Introduction	Model ○ ○●○○	Results	Conclusions O	Appendix

Housing 1

- Housing supply: $\overline{H}_t = \overline{H}_t^r + \overline{H}_t^o$
 - $\overline{H}_t^r \dots$ rented stock, $\overline{H}_t^o = \overline{H}_t^{om} + \overline{H}_t^{oo} + \overline{H}_t^w \dots$ owned stock
 - The housing stocks grow at rate n.
- Rental housing:
 - The rental housing-wealth-to-income ratio:

$$\beta_{Hr}^{N} \equiv \frac{P_{ht}^{r}\overline{H}_{t}^{r}}{Y_{Nt}} = \frac{\frac{P_{st}^{r}\overline{H}_{t}^{r}}{Y_{Nt}}}{r_{h} + \delta_{h} - g}$$

- P_{st}^r : rent (service price), P_{ht}^r : purchasing price
- r_{ht}: Rate of return on investments into rental housing:

$$r_{ht} = \frac{P_{st}^r}{P_{ht}^r} - \delta_h + \frac{\dot{P}_{ht}^r}{P_{ht}^r} \to P_{ht}^r = \frac{P_{st}^r}{r_{ht} + \delta_h - \frac{\dot{P}_{rht}^r}{P_{ht}^r}}$$

- In the steady state
$$rac{\dot{P}_{ht}^r}{P_{ht}^r}=g$$
 and $r_{ht}=r_h$

€NB

Housin

- Owned housing:
 - The owned housing-wealth-to-income ratio:

$$\beta_{Ho}^{N} \equiv \frac{P_{ht}^{o}\overline{H}_{t}^{o}}{Y_{Nt}} = \frac{\frac{P_{st}^{o}\overline{H}_{t}^{o}}{Y_{Nt}}}{r_{m} + \delta_{h} - g}$$

- P_{st}^{o} : imputed rent (shadow service price), P_{ht}^{o} : purchasing price
- Assumption: All home purchases are fully financed by mortgages at the rate *r_{mt}* and there is continuous re-financing (no transaction costs).

- Imputed rent:
$$P_{st}^{o} = \left(r_{mt} + \delta_h - \frac{\dot{P}_{ht}^{o}}{P_{ht}^{o}}\right) P_{ht}^{o}$$
.

Summary: Equilibrium interest rate

• Equilibrium condition:

$$\underbrace{\beta = \beta_{K} + \beta_{Hr} + \beta_{Hom} + \beta_{D}}_{\text{Wealth Demand}} = \underbrace{\widetilde{\beta}}_{\text{Wealth Supply}}$$

• Wealth Demand:

$$\beta_{K} = \frac{\alpha}{r_{k} + \delta_{k}}, \beta_{D} \text{ (public debt, assumed as given)}$$

$$\beta_{Hr} = \frac{\frac{P_{st}^{\circ} \overline{H}_{t}^{\prime}}{Y_{Nt}}}{r_{h} + \delta_{h} - g}, \beta_{Ho} = \frac{\frac{P_{st}^{\circ} \overline{H}_{t}^{\circ}}{Y_{Nt}}}{r_{m} + \delta_{h} - g}$$

• Equilibrium interest rates:

$$r^{*} = \frac{1}{\beta^{N}} \left(\beta_{K} r_{k} + \beta_{Hr} r_{h} + \beta_{Ho} r_{m} + \beta_{D} r_{d} \right)$$

$$r_{h} = r_{k} - \xi_{h}, \quad r_{m} = r_{k} - \xi_{m}, \quad r_{d} = r_{k} - \xi_{d} \quad \textcircled{ONB}$$

Model

Results •00000 Conclusions

Calibration

- Focus on steady-state comparisons between an "initial" situation (around 1980) and a "current situation" (around 2018).
- The values refer to the group of advanced countries
- Demographic and economic parameters

Initial: g = 3.0%, n = 1.0%, D = 75, R = 65, $\rho = 70\%$, $\beta_D^N = 20\%$ Current: g = 1.8%, n = 0.5%, D = 82, R = 63, $\rho = 60\%$, $\beta_D^N = 70\%$

Bequest motive

Initial: s_B and $s_B^{top1\%}$ such that $\beta = 350\%$ and $\frac{\text{Wealth of top } 1\%_t}{\text{Total Wealth}} = 28\%$ Current: $s_B^{top1\%}$ changes such that $\frac{\text{Wealth of top } 1\%_t}{\text{Total Wealth}} = 35\%$

<u>Risk discounts</u>

Initial: $\xi_h = 0\%$, $\xi_m = 2\%$, $\xi_d = 5\%$, Current: $\xi_m = 3\%$

Population shares

Renters: $50\% \rightarrow 40\%$, Mortgage owners: $25\% \rightarrow 35\%$ Outright owners: Pop. share constant, share of owned houses \uparrow

Model

Results 000000 Conclusions

Appendix

€NB

Numerical results

Case	r	$oldsymbol{eta}$	$eta_{m{\kappa}}$	$rac{eta_{H}}{eta}$
	Bas	eline mo	del (4 gr	oups)
Initial	9.6%	350%	168%	46%
Current	5.7%	599%	204%	54%

Model

Results 000000 Conclusions

Appendix

ONB

Numerical results

Case	r	$oldsymbol{eta}$	$eta_{m{K}}$	$rac{eta_{H}}{eta}$
	Bas	eline mo	del (4 gr	oups)
Initial	9.6%	350%	168%	46%
Current	5.7%	599%	204%	54%
	No ou	tright ov	vners (3 g	groups)
Initial	9.4%	350%	168%	46%
Current	6.5%	480%	196%	44%

Model

Results 000000 Conclusions

Appendix

Numerical results

Case	r	$oldsymbol{eta}$	β_{K}	$\frac{\beta_{H}}{\beta}$			
	Bas	Baseline model (4 groups)					
Initial	9.6%	350%	168%	46%			
Current	5.7%	599%	204%	54%			
	No ou	No outright owners (3 groups)					
Initial	9.4%	350%	168%	46%			
Current	6.5%	480%	196%	44%			
	N	o owners	s (2 grou	os)			
Initial	9.3%	350%	175%	44%			
Current	6.2%	476%	212%	39%			

€NB

Model

Results 000000 Conclusions

Appendix

Numerical results

Case	r	$oldsymbol{eta}$	$eta_{m{\kappa}}$	$rac{eta_{H}}{eta}$
	Bas	eline mo	del (4 gr	oups)
Initial	9.6%	350%	168%	46%
Current	5.7%	599%	204%	54%
	No ou	tright ov	vners (3 g	groups)
Initial	9.4%	350%	168%	46%
Current	6.5%	480%	196%	44%
	N	o owners	s (2 grou	os)
Initial	9.3%	350%	175%	44%
Current	6.2%	476%	212%	39%
	No ho	busing (γ	v = 0, 2 g	(roups)
Initial	7.7%	249%	225%	0%
Current	4.0%	370%	280%	0%

€NB

Model

Results 000000 Conclusions

Appendix

Results 1

- Decrease in r by 3.9 pp (from 9.6% to 5.7%)
- Increase in β by 250 pp (from 350% to 599%)
- Increase in the β_H/β by 8 pp (from 46% to 54%)
- Results are broadly in line with the observed data.
 - $\Delta r \approx 3$ pp
 - β from 300%-350% (1970-80) to 500%-550% (2015-18)
 - β_H/β from 36% (1970) to 53% (2015)
 - Sources: Piketty/Zucman, 2014; Alvaredo et al., 2018; Bauluz et al., 2022
- Most of the increase in β is due to housing wealth (only moderate increase in β_K).
- Comparison to the case without (outright) owners:
 - Without (outright) owners the model implies a *reduction* in the share of housing wealth. <a>Intuition
- Comparison to the case without housing:
 - Existence of housing increases r and β (even though $\beta_{\kappa} \downarrow$).

Case	r	$r_k = r_h$	r _m	r _d	β	$rac{eta_{H}}{eta}$
Initial	9.6%	10.3%	8.3%	5.3%	350%	46%
Current	5.7%	7.2%	4.2%	2.2%	599%	54%

Interest rates:

- Mortgage rate r_m : 8.3% \rightarrow 4.2%
- Interest rate on safe assets: $7.3\% \rightarrow 3.3\%$
- Interest rate on gov. bonds: $5.3\% \rightarrow 2.2\%$
- Return on housing (rented & owner-occupied): 9.2% \rightarrow 4.8% (See
- Mortgages-to-GDP ratio increases from 36% to 74% (in the data from 25% to 65% (Jordà et al., 2016)).
- Inheritance flow increases from 6.6% to 9.2% (in the data from around 6% to around 11%).

Model

Results 000000 Conclusions

Appendix

Comparison to the literature

Decomposition of the decline in the real interest rate in Rachel/Summers (2019), Platzer/Peruffo (2022) and this paper.

Variable	RS '19	PP '22	This paper (4 Groups)
TFP growth (g)	-1.8	-1.00	-1.12
Pop. growth (n)	-0.6	-0.25	-0.39
Longer retirement (D)	-1.1	-0.46	-0.78
Length of working life (R)	-0.1	-	-0.07
Replacement rate (ho)	-	-	-0.13
Inequality $(s_B^w \text{ and } d_y^w)$	-0.7	-0.70	-1.90
Public Debt (β_D^N)	+3.6	+0.31	+0.29
Interactions	-1.1	-0.06	0.12
Other factors	–	0.00	0.03
Total	-1.8	-2.16	-3.95

€NB

Conclusions

Additional implications

- Positive correlation of outright ownership rates with aggregate wealth and with housing wealth share.
- The evidence in Fagereng et al. (2019) about "capital gains savers" is also compatible with the assumption of sticky outright owners.
- The model offers an explanation for a divergent trend in the rates of gross and net savings <see

Conclusions

Conclusions

- A model that includes land/housing is compatible with a decline in the interest rate due to aging, increasing inequality and a slowdown in productivity growth.
- In order to also explain the rise in the housing share it is necessary to introduce additional elements like the existence of owner occupiers.
- The full model is not only (broadly) in line with the developments of r, β and β_H/β but also with other important magnitudes like: the inheritance flows, the volume of mortgages, the importance of capital gain savers.

Results

Conclusions

Appendix •00000000

Appendix

National accounting

 GDP_t =Haig-Simmons national income

- The Haig-Simmons definition of national income is the theory-consistent concept. Its use has been suggested, e.g., by Robbins (2018) and Fagereng et al. (2019).
- Note that empirically often $\frac{NDP_t}{Y_{Nt}} \approx 1 \rightarrow \overline{\beta_t \approx \beta_t^N}$.

• Since:
$$\beta_t \equiv \frac{\text{Wealth}_t}{NDP_t} = \frac{\text{Wealth}_t}{Y_{Nt}} \frac{Y_{Nt}}{NDP_t} = \beta_t^N \frac{Y_{Nt}}{NDP_t} \approx \beta_t^N$$

ONB

Rates of returns on housing vs. equity

TABLE VII REAL RATES OF RETURN ON EQUITY AND HOUSING						
	Full	Full sample Post-1950		Post-1980		
Country	Equity	Housing	Equity	Housing	Equity	Housing
Average, unweighted	6.67	7.26	8.30	7.47	10.78	6.43
Average, weighted	7.12	6.72	8.19	6.40	9.08	5.50

Source: Jordà et al., 2019

- Depending on the sample a risk discount between 1% and 4% seems reasonable (average between ξ_h and ξ_m).
- Eichholtz et al. (2021) and Chambers et al. (2021) find lower (risk-adjusted) returns to rental housing for Amsterdam, Paris and Oxbridge colleges than Jordà et al. (2019).

Intuition for the behavior of the housing share 1

Without outright owners:

$$\frac{\beta_{H}}{\beta_{K}} = \frac{\frac{1}{Y_{Nt}} \left(\frac{P_{st}^{\prime} \overline{H}_{t}^{\prime}}{r_{h} + \delta_{h} - g} + \frac{P_{st}^{o} \overline{H}_{t}^{om}}{r_{m} + \delta_{h} - g} \right)}{\frac{\alpha}{\overline{r_{k} + \delta_{k}}}}.$$

Simple example:

• Assumptions:

-
$$P_{st}^{r}\overline{H}_{t}^{r} = \gamma Y_{Lt}^{r}$$
, and $P_{st}^{o}\overline{H}_{t}^{om} = \gamma Y_{Lt}^{o}$
- $r_{k} = r_{h} = r_{m} = g + n$, $\delta_{k} = \delta_{h} = 0$
• $\frac{\beta_{H}}{\beta_{K}} = \frac{\gamma(1-\alpha)}{\alpha} \frac{g+n}{n}$
• $\frac{\partial(\beta_{H}^{N}/\beta_{K}^{N})}{\partial t} = \frac{\gamma(1-\alpha)}{\alpha} \frac{g}{n} \left(\frac{\dot{g}}{g} - \frac{\dot{n}}{n}\right)$

Intuition for the behavior of the housing share 2

With outright owners:

$$\frac{\beta_H}{\beta_K} = \frac{\gamma(1-\alpha)}{\alpha} \left[\kappa_N^r \frac{r_k + \delta_k}{r_h + \delta_h - g} + \left(1 - \kappa_N^r + \frac{\kappa_H^{od} - \kappa_N^{od}}{1 - \kappa_H^{od}} \right) \frac{r_k + \delta_k}{r_m + \delta_h - g} \right],$$

 κ_N^j ... population size of group j, κ_H^j ... size of the housing stock. • Implications:

$$\begin{array}{l} - \ \beta_{H}^{j,N} \equiv \frac{P_{it}^{j}\overline{H}_{t}^{j}}{Y_{Nt}} = \frac{P_{st}^{j}\overline{H}_{t}^{j}}{Y_{Nt}} \frac{1}{r_{j}+\delta_{h}-g}.\\ - \ \text{Note:} \ P_{st}^{j}\overline{H}_{t}^{j} = \gamma \mathcal{E}_{t}^{j}. \ \text{A change in } \overline{H}_{t}^{j} \ \text{has } no \ \text{effect on } \beta_{H}^{j,N}.\\ - \ \text{Now:} \ \text{Assume } \overline{H}_{t}^{od} \uparrow \text{ and } \overline{H}_{t}^{om} \downarrow. \ \text{Then } P_{st}^{o} \uparrow \text{ such that } P_{st}^{o}\overline{H}_{t}^{om} \\ \text{stays the same. But then } P_{st}^{o}\overline{H}_{t}^{od} \uparrow \end{array}$$

▲ Back

Conclusions

Appendix 0000000000

Outright owners

- Wide variation across countries: 15%-25% (AT, DE, NL) to >75% (Eastern Europe).
- In the UK the share increased from 37% (1980) 41% (2018)
- Positive correlation of outright ownership rates with aggregate wealth and with housing wealth share.

Add. implications

Model

Results

Conclusions

Appendix 0000000000

€NB

Capital gains savers (Fagereng et al., 2019)

Add. implications

Inheritance flow and aggregate savings ratio

- Bequest:
 - The inheritance flow is defined as $b_{yt}^N = \frac{B_t}{Y_{Nt}}$.
 - The ratio of *financial* bequests moves only weakly from 5.9% to 7.1% in the 4 groups model. But this excludes the bequest of the directly owned housing stock.
 - The mortality rate is given by $\mathfrak{m} = \frac{n}{e^{n(D-A)}-1}$ which is about 1.36% in both situations. The inherited directly owned housing stock amounts to: $\mathfrak{m} \times \beta_{Hod}^N$. This is adds 0.7pp to b_{yt}^N (initial) and 2.1pp (today)
- Savings:
 - The aggregate gross savings rates (including all capital gains) is $\overline{s} = 29.9\%$ (initial) which increases to $\overline{s} = 33.9\%$ (today).
 - If one excludes capital gains from savings and from GDP: $\overline{s} = 28.2\% \rightarrow 31.4\%$
 - The net savings rate: $\overline{s}^{net} = 15.3\% \rightarrow 15.1\%$ (with capital gains); $\overline{s}^{net} = 12.9\% \rightarrow 11\%$ (w/o capital gains)

Model

Results

€NB

Inheritance flows in Europa, 1900-2010

Source: Alvaredo et al., 2017

