On a Lender of Last Resort with a Central Bank and a Stability Fund

Giovanni Callegari¹ Ramon Marimon^{2,3} Adrien Wicht³ Luca Zavalloni¹

¹European Stability Mechanism

²Universitat Pompeu Fabra - BSE, CREi, CEPR and NBER

³European University Institute

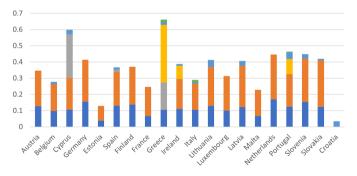
16 November 2023

Last two decades characterized by several crises:

- \blacksquare Multiple programs \rightarrow Large fraction of debt in euro area institutions.
- No leading sovereign debt policy but heavy intervention of the ECB
 - Direct: PSPP, PEPP
 - Announced: MTO, TPI

Motivation

Eurosystem, ESM/EFSF, European Commission holdings of Member States government liabilities, % of end 2022 total government debt



■ PEPP ■ PSPP ■ ESM ■ EFSF ■ EC - SURE ■ EC - NGEU (loans)

Last two decades characterized by several crises:

- \blacksquare Multiple programs \rightarrow Large fraction of debt in euro area institutions.
- No leading sovereign debt policy but heavy intervention of the ECB
 - Direct: PSPP, PEPP
 - Indirect: MTO, TPI
- TPI is conditional on debt being sustainable:

...in ascertaining that the trajectory of public debt is sustainable, the Governing Council will take into account, where available, the debt sustainability analyses of the European Commission, ESM [...]

 \Rightarrow What is to complement the ECB in its role of lender of last resort?

This Paper

• Role and design of Financial Stability Fund:

- Roch and Uhlig (2018), Liu et al. (2020), Ábrahám et al. (2019), Dovis and Kirpalani (2023).

Sovereign debt crises:

- Fundamental-driven à la Eaton and Gersovitz (1981).
- Belief-driven à la Cole and Kehoe (2000).
- Effective lender of last resort:
 - Sovereign debt stabilization.
 - Interaction between Financial Stability Fund and Central Bank.

Main Results

- Fund prevents both fundamental and belief-driven debt crises:
 - Provides securities contingent on state and non-default unlike private lenders.
 - Fills the gap in case of failed debt auction.
- Perfect complementarity between Fund and Central Bank:
 - Fund can stabilize sovereign debt (i.e. makes it safe), but may lack absorption capacity.
 - Central Bank has absorption capacity, but needs instruments to prevent fundamental risk.
- Optimal maturity structure as outcome of institutional design:
 - Longer maturities avert self-fulfilling debt crises.
 - Shorter maturities ease the Fund's intervention.

6

Fund is essential

1 Environment

2 Quantitative Analysis

3 Conclusion

- Benevolent government with no committment acting as a representative agent
- Continuum of private competitive lenders:
 - Non-contingent long-term debt, $b' \leq 0$, maturity δ and coupon κ .
 - Coordination on sunspot $\rho \in \{0,1\}$
- Financial Stability Fund:
 - Full set of Arrow securities, $\hat{a}'(\theta)$.
 - Complements private lenders (Minimum intervention)

Fund Contract I

Two sided limited enforcement constraints

- Fund should make no permanent losses ex-ante or ex-post:

No-Excessive-Lending (or DSA)

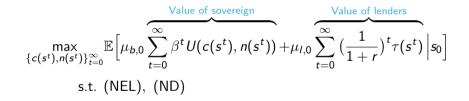
$$\mathbb{E}\Big[\sum_{j=t}^{\infty} \left(\frac{1}{1+r}\right)^{j-t} \tau^{f}(s^{j}) \Big| s^{t} \Big] \ge \underbrace{\theta_{t-1}Z}_{\text{No permanent loss if } Z = 0}.$$

$$\mathbb{E}\Big[\sum_{j=t}^{\infty}\beta^{j-t}U(c(s^{j}), n(s^{j}))\Big|s^{t}\Big] \geq \underbrace{V^{D}(s^{t})}_{\text{Value under defi}}.$$

(NEL)

(ND)

 $\{c(s^t), n(s^t)\}_{t=0}^{\infty}$ is a solution to the Fund's contract, given $b_{l,0}$, if there exist sequences of transfers $\{\tau_p(s^t), \tau_f(s^t)\}_{t=0}^{\infty}$ with associate $\{b_{l,t}\}_{t=0}^{\infty}$, such that:



 \Rightarrow Existence and uniqueness: interiority condition and appropriate $b_{l,0}$.

 \Rightarrow Initial $\mu_{b,0}$ and $\mu_{I,0}$ obtained by setting (NEL) to 0 at t = 0.

Two Types of Sudden Stops

1 Fundamental-driven (excessive lending externality):

- When (NEL) binds at θ' , negative spread at θ : $r_f(s, \omega, \bar{\omega}') = r_\rho(s, \omega, \bar{\omega}') < r$
- Negative spread restricts provision of Fund's insurance and sustains no-trade in private bond markets
- Private lenders would like to liquidate their holdings to the fund and invest at r

 \Rightarrow Fund must be ready to absorb long-term private debt position δb_l .

2 Belief-driven:

Details

- Borrower is in crisis zone and $\rho = 1$.
- Fund must be able to absorb the Gross Financial Needs (GFN) if needed, i.e. $\bar{a}'_l \geq \bar{\omega}_l \delta b_l$.

Optimal Maturity

Recall, two types of sudden stops to take care of:

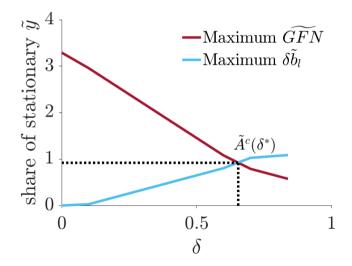
- Fundamental-driven: δb_l increasing in δ .
- Belief-driven: $GFN(\delta) = q_f(s, \omega, \bar{\omega}')(\bar{\omega}'_l \delta \omega_l)$ decreasing in δ

• The minimal capacity absorption for a Fund contract with maturity δ is:

 $A^{c}(\delta) = \max\{GFN(\delta), \delta b_{l}\}.$

- The optimal maturity structure: $\delta^* = \arg \min_{\delta \in [0,1]} A^c(\delta)$.
- The Required Fiscal Capacity (RFC) is $A^{c}(\delta^{*})$.

Optimal Maturity



Fund's Intervention

■ Minimal Intervention Policy: For a given state (θ, b_l) , we say that the Fund implements a Minimal Intervention Policy if $\bar{a}'_l = \underline{a}(\theta, b_l)$ where

1 If (NEL) binds,
$$\underline{a}(\theta, b_l) \in [\check{a}, \check{a} + \delta b_l]$$

If (NEL) does not bind, (s, ω) ∈ C(ρ) and ρ = 1, then <u>a</u>(θ, b_l) ∈ [ω_l − δb_l, ω_l].
 Otherwise, <u>a</u>(θ, b_l) = 0. Crisis zone

Implications:

- No Default: With the Fund's intervention, the sovereign does not default.
- Safe Zone: With the Fund's intervention, the sovereign remains in the safe zone.
- Safe assets: With the Fund's intervention, all sovereign debt liabilities become safe assets.
- The First and Second Welfare Theorems are satisfied.

- \blacksquare Problem: Fund may not have the necessary absorption capacity \rightarrow e.g. ESM.
- Solution: Central Bank (CB) may complement the absorbing capacity of the Fund.
- CB unpleasant arithmetic:
 - Reserves must be safe and transfers cannot be permanent.
 - CB intervention conditional on sovereign debt free from fundamental defaults \rightarrow ECB's TPI/OMT.
- Fund allows CB to intervene and CB guarantees the success of Fund intervention.

1 Environment

2 Quantitative Analysis

3 Conclusion

Calibration to Italy 1992 to 2019

Calibration Outcome

Variable	Data	SFG	2	No SFC						
		Without Fund	With Fund	Without Fund	With Fund					
A. Targeted Moments										
b'/y%	117.64	118.00	123.70	119.10	176.8					
n%	38.64	38.87	39.09	38.80	39.51					
spread%	2.50	0.48	-0.04	0.13	-0.03					
$\sigma(\tau/y)/\sigma(y)$	1.09	1.38	0.91	0.96	0.91					
$\sigma(n)/\sigma(y)$	0.75	0.75	0.74	0.74	0.75					
corr(spread, y)	-0.16	-0.29	-0.71	-0.37	-0.66					
$\operatorname{corr}(au/y,y)$	0.29	0.42	0.97	0.54	0.98					
B. Non-Targeted Moments										
$\sigma(spread)$	0.96	0.66	0.01	0.08	0.01					
$\sigma(c)/\sigma(y)$	1.27	0.88	0.25	0.91	0.20					
$\operatorname{corr}(c, y)$	0.53	0.61	0.77	0.64	0.85					
$\operatorname{corr}(n, y)$	0.68	0.56	0.98	0.51	0.99					

Welfare

State	Welfare Gains (%)		Maximal Debt Absoption (% of GDP)			
	With Fund		With Fund		Without Fund	
	SFC	No SFC	SFC	No SFC	SFC	No SFC
$ ho = 0$ $\gamma = \gamma_{min}$	0.50	0.80	180	250	159	171
$ ho = 0$ $\gamma = \gamma_{\mathit{med}}$	0.16	0.42	144	194	136	141
$ ho = 0$ $\gamma = \gamma_{max}$	0.01	0.38	126	168	112	113
$ ho = 1$ $\gamma = \gamma_{min}$	0.50	-	180	-	158	-
$ ho = 1$ $\gamma = \gamma_{\mathit{med}}$	0.16	-	144	-	136	-
$ ho=1$ $\gamma=\gamma_{max}$	0.01	-	126	-	112	-
Average	0.11	0.41				

Optimal Maturity

Average Italian debt maturity: 6.2 years.

• Optimal debt maturity: 2.9 years.

■ Current needed capacity absorption: 105% of GDP.

• Capacity absorption under optimal maturity: 90% of GDP.

1 Environment

2 Quantitative Analysis

21

- Optimal design of a lender of last resort.
- Fund is essential as it provides insurance and prevents excess lending.
- Fund averts debt crises but might lack the required absorption capacity.
- Central Bank can complement the Fund intervention.
- Optimal maturity to minimize the required absorption.

References

ABRARÁM, Á., E. CARCELES-POVEDA, Y. LIU, AND R. MARIMON (2019): "On the Optimal Design of a Financial Stability Fund," Working Paper 2018/105, ADEMU.

COLE, H. L. AND T. J. KEHOE (2000): "Self-Fulfilling Debt Crises," Review of Economic Studies, 67, 91-116.

DOVIS, A. AND R. KIRPALANI (2023): "On the Design of a Robust Lender of Last Resort," Unpublished Manuscript.

EATON, J. AND M. GERSOVITZ (1981): "Debt with Potential Repudiation: Theoretical and Empirical Analysis," Review of Economic Studies, 48, 289-309.

KRUEGER, D., H. LUSTIG, AND F. PERRI (2008): "Evaluating Asset Pricing Models with Limited Commitment Using Household Consumption Data," Journal of the European Economic Association, 6, 715-716.

LIU, Y., R. MARIMON, AND A. WICHT (2020): "Making Sovereign Debt Safe with a Financial Stability Fund," .

ROCH, F. AND H. UHLIG (2018): "The Dynamics of Sovereign Debt Crises and Bailouts," Journal of International Economics, 114, 1-13.

Euro Area sovereign debt by country and holder I

Price is determined by the agent whose constraint is not binding (Krueger et al., 2008)

$$q_f(\theta',\omega'(\theta')|s,\omega) = \frac{\pi(\theta'|\theta)}{1+r} \Big[(1-\delta+\delta\kappa) + \delta \sum_{\theta''|\theta'} q_f(\theta'',\omega''(\theta'')|s',\omega') \Big] \max\Big\{ \frac{u_c(c')}{u_c(c)}\eta,1\Big\}.$$

- If (NEL) binds in θ' , then $q_f(\theta', \omega'(\theta')|s, \omega) > \frac{1-\delta+\delta\kappa}{1+r-\delta}$.
- As private lenders have access to the Fund, no arbitrage is possible so

$$q_{
ho}(s,\omega,ar{\omega}') = \sum_{ heta'| heta} q_{f}(heta',\omega'(heta')|s,\omega).$$

 \Rightarrow negative spread passes through private bond market.

Appendix IRF I

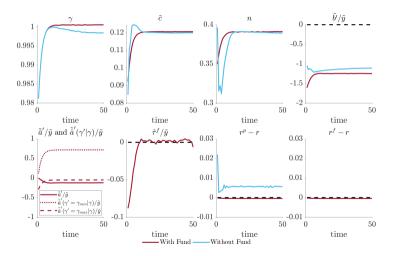


Figure: Impulse Response Functions to a Negative γ Shock Without SFC

Appendix IRF II

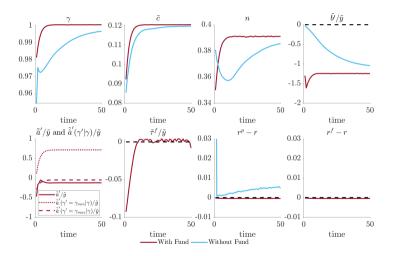


Figure: Impulse Response Functions to a Negative γ Shock With SFC and LOLR Absorption

Simulation I

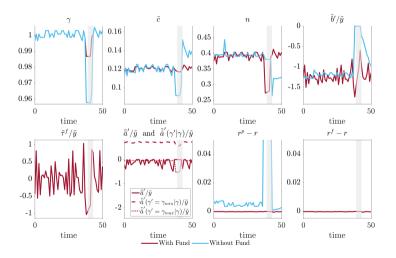


Figure: Simulation of a Steady State Path Without SFC

Appendix Simulation II

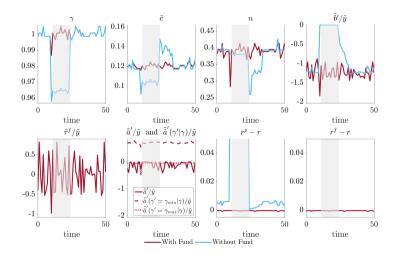


Figure: Simulation of a Steady State Path With SFC and LOLR Absorption

Fund absorption I

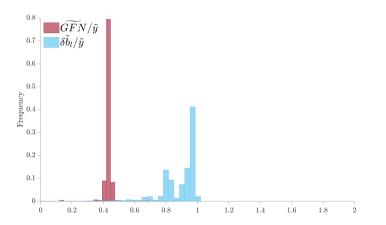


Figure: Absorption at Italian δ

Fund absorption II

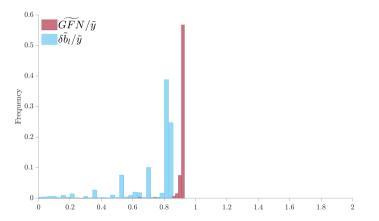


Figure: Absorption at optimal δ

Economy without the Fund

• Discrete choice with $s \equiv (\theta, \rho)$:

$$V(s, b) = \max_{b'} \mathbb{E} \left\{ \underbrace{V^{P}(s, b, b')}_{\text{Value under repayment}}, \underbrace{V^{D}(s)}_{\text{Value under repayment}} \right\}.$$

■ Value under repayment:

$$V^{P}(s, b, b') = \max_{c,n} U(c, n) + \beta \mathbb{E} \Big[V(s', b') \Big| s \Big]$$

s.t. $c + \underbrace{q_{p}(s, b, b')(b' - \delta b)}_{\text{New private debt issuance}} \leq heta f(n) + \underbrace{(1 - \delta + \delta \kappa)b}_{\text{Maturing debt and coupon payment}}.$

Value under default:

$$V^{D}(s) = \max_{n} U(\theta^{D}f(n), n) + \beta \mathbb{E}\Big[(1-\lambda)V^{D}(s') + \underbrace{\lambda}_{\lambda} V(s', 0) \Big|s\Big].$$

Market re-access probability

Appendix Self-Fulfilling Debt Crises

Private bond price:

$$q_{p}(s, b, b') = \frac{1 - \overbrace{d(s, b, b')}^{\text{Default policy today}}}{1 + r} \left[1 - \delta + \delta \kappa + \delta \mathbb{E}\left[(1 - \overbrace{d(s', b', b'')}^{\text{Default policy tomorrow}})q_{p}(s', b', b'')|s\right]\right].$$

 \Rightarrow Multiple equilibria: in Eaton and Gersovitz, $d(s, b, b') = 0 \ \forall (s, b, b')$ and $\mathbb{E}d(s', b', b'') \ge 0$.

- In Eaton and Gersovitz, d(s, b, b') = 0 for all (s, b, b') and $\mathbb{E}d(s', b', b'') \ge 0$.
- Three zones:
 - **1** The safe zone: D(s, b) = 0 and ρ is irrelevant.
 - **2** The default zone: D(s, b) = 1 and ρ is irrelevant.
 - **3** The crisis zone: D(s, b) = 1 if $\rho = 1$ and D(s, b) = 0 if $\rho = 0$.
 - $\Rightarrow D(s,b) = d(s,b,B(s,b)) \text{ where } b' = B(s,b).$