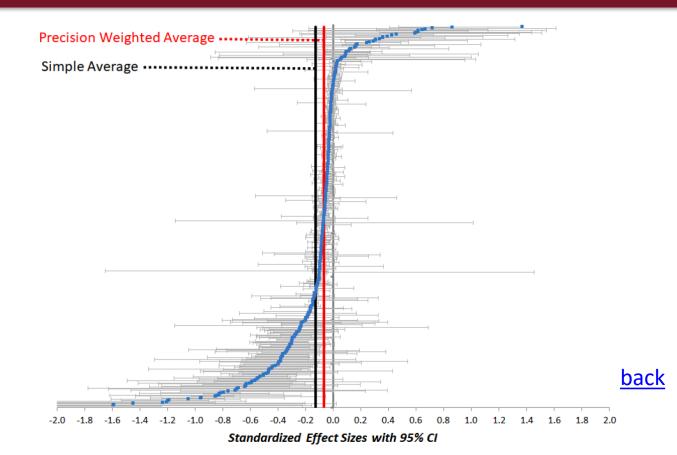


What do we know about macroprudential policy so far?

Enrique G. Mendoza University of Pennsylvania & NBER


"20 years of Macroprudential Policy in Europe – looking back and looking forward" National Bank of Slovakia, Bank of Finland, SUERF Bratislava, 21-22 September 2023.

What we know empirically

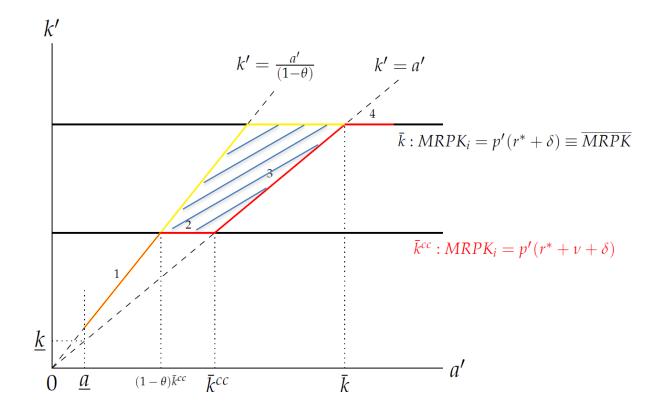
- Credit booms tend to precede financial crises and hence should be prevented (e.g., Mendoza & Terrones (12))
- Mixed results on effectiveness of broad MPP indicators on aggregate credit and home prices (Galati & Moessner (13,18), Gambacorta & Murcia (19))
- Araujo et al. (20): metadata of 58 papers, 6k estimates
 - a) Precision-weighted, standardized <u>average effect</u> of combined MPP tools on credit is about -0.8% but very noisy
 - b) Controlling for unpublished papers, effect of broad-based tools on credit is insignificant (housing tools too if conditioning on "tools in place")
 - c) All aggregate MPP tools have insignificant effects on household credit and home prices
- Stronger evidence for specific instruments (LTVs, DTIs, cap reqs.) and in micro data

Effects of tightening MPP on credit

- **Positive**: Fisherian deflation of collateral prices is a plausible mechanism for explaining crises facts
- *Normative*: MPP tackles pecuniary externality & overborrowing caused by collateral constraints
- Optimal policy is very powerful (reduces sharply frequency and magnitude of financial crises)
- But implementation is challenging
 - 1. Very complex, nonlinear policy
 - 2. Lack of credibility (optimal policy is time-inconsistent)
 - 3. Unlike Taylor rule for MP, simple rules perform poorly

Simple v. optimal policies

		$\tau = 0.6, \eta_b = 2, \overline{b} = -0.23$		
	Decentralized	Optimal	Best	Best
	Equilibrium	Policy	Taylor	Fixed
Welfare Gains $(\%)$	_	0.30	0.09	0.03
Crisis Probability (%)	4.0	0.02	2.2	3.6
Drop in Asset Prices (%)	-43.7	-5.4	-36.3	-41.3
Equity Premium (%)	4.8	0.77	3.9	4.3
Tax Statistics				
Mean	_	3.6	1.0	0.6
Std relative to GDP	_	0.5	0.2	_
Correlation with Leverage	—	0.7	0.3	_


Financial Taylor Rule: $\tau = \max[0, \tau_0(b_{t+1}/\bar{b})^{\eta_b} - 1]$

• Results from Bianchi-Mendoza (JPE, 18), for a model with land as collateral calibrated to U.S. data

- Interaction with MP, separate MPP and MP rules far dominate LAW MP rules (Carrillo et al. (AEJMacro, 21))
- Efficiency tradeoffs are important, but little understood (MPP tools akin to capital taxes that distort investment)
- Heterogeneity of efficiency tradeoffs causes large capital misallocation and welfare losses (Andreasen et al. (23))
 - MPP tools work like size-dependent industrial policies
 - Mid-size, high-TFP and exporting firms affected the most
 - LTVs attain same overall credit reduction with significantly smaller "side effects" than CCs or debt surcharges
 - Strong empirical evidence in firm-level data from Chile's CCs episode in the 1990s

Application to Chilean CCs: Long-run Effects (unr. Res. Req. equivalent to 1.75% tax on inflows)

	CC regime $ u = 0.0175 $ $ \theta^{NE} = 0.0610 $	LTV regulation u = 0 $ \theta^{NE} = 0.0538 $
Exports	-0.82%	-0.94%
Share of exporters	-5.74%	-1.62%
Domestic Sales	-0.94%	-0.21%
Investment	-1.46%	-0.91%
Consumption	-0.73%	-0.08%
Final goods output	-0.85%	-0.21%
Real GDP	-0.56%	-0.38%
Real wage	-0.70%	-0.42%
Wage	-1.06%	-0.40%
Price level (Real ex. rate)	-0.36%	0.02%
Agg. credit/Value Added	-12.87%	-12.87%

	Baseline w. CCs		LTV regulation	
	Misallocation	Welfare	Misallocation	Welfare
All firms	0.50%	-0.61%	0.29%	-0.20%
Exp. status				
Exporters	1.25%	-1.82%	0.91%	-0.15%
Non-exporters	0.34%	-0.56%	0.16%	-0.20%
OSG				
Large	0.51%		0.31%	
Small	0.23%		0.04%	

Empirical evidence from Chilean CCs

	(1)	(2)	(3)	
		$mis_{iit}(VA)$		
VARIABLES	All firms	Balanced Panel	W/o crisis cohort	
CC*TFP	0.876***		0.883***	
	(0.122)		(0.126)	
CC*Exp	0.224***		0.208***	
	(0.030)		(0.030)	
CC*OSG	0.248***		0.244***	
	(0.031)		(0.031)	
CC*TFP_BP		1.363***		
		(0.190)		
CC*Exp_BP		0.296***		
		(0.060)		
CC*OSG_BP		0.309***		
		(0.056)		
	o 1 o = 1			
Observations	91,374	22,204	90,359	
R-squared	0.624	0.579	0.625	
Controls	YES	YES	YES	
Firm FE	YES	YES	YES	
Time FE	YES	YES	YES	

So what do we know?

- 1. Credit booms precede financial crises, should be prevented.
- 2. Targeted MPP tools (LTVs, DTIs, Cap. Reqs.) are effective at reducing credit and home prices, but aggregate tools like CCs, CCyB much less clear
- 3. Even if effective, implementing MPP with a net cost/benefit gain is challenging (complexity, credibility, underinvestment, misallocation)
- 4. Quantifiable models capturing relevant tradeoffs play a crucial role in policy design
- 5. Fisherian models can explain the facts and provide a marketfailure argument for MPP, but more progress is needed to determine whether other fin. frictions are also relevant