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Motivation

Inflation expectations are usually closely monitored at central banks as they
are believed to be an important determinant of current inflation (see e.g.
latest ECB’s Strategy Review).

Models used to forecast inflation often do not include measures of
expectations.

Do they contain additional information beyond what can be captured in other
inflation predictors and macro models?
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Questions

How can one incorporate information on observed inflation expectations
in model-based forecasts?

Does it help to incorporate such information in a model?

Which measures of expectations help (most)?

How robust are the results across models and economic areas?

What happens after COVID-19?
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Mainly drawing from two papers:

1 Bańbura, Leiva-León and Menz (2021) “Do inflation expectations
improve model-based inflation forecasts?”

2 Bańbura, Brenna, Paredes and Ravazzolo (2021) “Combining Bayesian
VARs with survey density forecasts: does it pay off?”

Focus on time series (reduced form) models, the euro area (and largest
member states); starting in 2000s; most results based on the pre-pandemic
period.
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How to incorporate survey results in a model
A “stylised” literature review

Expectations serve:

as boundary values
[Faust and Wright, 2013], [Clark and Doh, 2014], [Chan et al., 2018],
[Hasenzagl et al., 2018], [Jarociński and Lenza, 2018], [Bańbura and Bobeica, 2022]

as explanatory variables
[Stockhammar and Österholm, 2018], [Moretti et al., 2019],
[Álvarez and Correa-López, 2020], [Kulikov and Reigl, 2019]

to tilt or constrain the model forecasts
[Krüger et al., 2017], [Ganics and Odendahl, 2021], [Tallman and Zaman, 2020],
[Bańbura et al., 2021], [Galvao et al., 2021], [Bobeica and Hartwig, 2022]

to inform the model parameters
[Wright, 2013], [Frey and Mokinski, 2016]

Most papers find improvements when including expectation info, with few
exceptions [Cecchetti et al., 2017, Forbes et al., 2019]
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Modelling approaches, paper 1

1. ADL models with time-varying trend inflation
[Bańbura and Bobeica, 2022]

boundary

2. ADL models with time-varying trend inflation and time-varying coefficients
[Chan et al., 2018]

boundary

3. Bayesian VARs with democratic priors
[Wright, 2013, Clark, 2011]

priors

4. Bayesian VARs with time-varying trends
[Bańbura and van Vlodrop, 2018]

boundary

5. Phillips curves with constant coefficients
explanatory variables

6. Bayesian VARs with Minnesota priors
explanatory variables
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Modelling approaches, paper 2

Bayesian VARs in different implementations
With Minnesota priors, democratic priors, time-varying trends, time-varying
parameters.

1. Including SPF distributions in a model combination (an optimal pool)

2. Tilting model distributions to the SPF mean (and variance)

a. ex ante - tilting individual model forecasts before combining
a. ex post - tilting the combined forecasts
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Scope of the analysis

Real-time out-of-sample forecast evaluation, matching information
available to survey respondents

Point and density forecasts

Medium-term horizons (one and two years ahead)

Different measures of expectations (source and horizon)
Survey of Professional Forecasters (SPF), Consensus Economics, Expectations
of firms and households from European Commission survey, Inflation-linked
swap rates

Euro area and several member states
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Adding expectations from the SPF, euro area
Relative RMSFE, Headline HICP
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Note: The figure shows the RMSFE of the model version incorporating expectations divided by the RMSFE of the version not
incorporating such information. The RMSFE is computed over 2001Q4-2019Q4 for one-year-ahead horizon and over 2002Q4-
2019Q4 for two-year-ahead horizon. The numbers denote the model classes: 1: ADL models with time-varying trend inflation, 2:
ADL models with time-varying trend inflation, time-varying coefficients and stochastic volatility, 3: Bayesian VARs with democratic
priors, 4: Bayesian VARs with time-varying trends, 5: Phillips curves with constant coefficients, 6: Bayesian VARs with Minnesota
priors. ’a’ and ’b’ refer to univariate and multivariate models, respectively.
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Adding other types of expectations, euro area
Relative RMSFE, Headline HICP
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Note: The figure shows the RMSFE of the model version incorporating expectations divided by the RMSFE of the version not
incorporating such information. The RMSFE is computed over 2001Q4-2019Q4 for one-year-ahead horizon and over 2002Q4-
2019Q4 for two-year-ahead horizon, with the exception of inflation linked swaps for which the respective evaluation samples are
2006Q1-2019Q4 and 2007Q1-2019Q4. The numbers denote the model classes: 1: ADL models with time-varying trend inflation, 2:
ADL models with time-varying trend inflation, time-varying coefficients and stochastic volatility, 3: Bayesian VARs with democratic
priors, 4: Bayesian VARs with time-varying trends, 5: Phillips curves with constant coefficients, 6: Bayesian VARs with Minnesota
priors. ’a’ and ’b’ refer to univariate and multivariate models, respectively.
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Adding expectations from Consensus, EA countries
Relative RMSFE, Headline HICP

One-year-ahead horizon Two-year-ahead horizon
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Note: The figure shows the RMSFE of the model version incorporating expectations divided by the RMSFE of the version not
incorporating such information. The RMSFE is computed over 2005Q4-2019Q4 for one-year-ahead horizon and over 2006Q4-
2019Q4 for two-year-ahead horizon. The numbers denote the model classes: 1: ADL models with time-varying trend inflation, 2:
ADL models with time-varying trend inflation, time-varying coefficients and stochastic volatility, 3: Bayesian VARs with democratic
priors, 4: Bayesian VARs with time-varying trends, 5: Phillips curves with constant coefficients, 6: Bayesian VARs with Minnesota
priors. ’a’ and ’b’ refer to univariate and multivariate models, respectively.
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Combining BVAR forecasts and SPF expectations
Headline HICP

Optimal
Pool:
abs.
scores

SPF Opt.
Pool
w/SPF

µ
tilted
ex-
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µ
tilted
ex-
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µ & σ
tilted
ex-
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µ & σ
tilted
ex-
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4-q
CRPS 0.503 0.932 0.991 0.917 0.937 0.943 0.944
LPS -1.306 -0.024 0.003 0.117 0.056 -0.007 -0.082
PITs 0.839 0.002 0.704 0.218 0.156 0.000 0.000

8-q
CRPS 0.567 0.949 1.020 0.922 0.941 0.964 0.963
LPS -1.429 -0.040 -0.001 0.082 0.032 -0.263 -0.284
PITs 0.552 0.000 0.961 0.368 0.232 0.000 0.000

Note: CRPS and LPS: relative accuracy scores with respect to optimal pooling (i.e. first column); PITs: p-values of Berkowitz
uniformity test (in absolute terms).
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Adding exp. from the SPF, euro area, COVID-19
Difference of cumulative sum of squared forecast errors

Headline HICP HICP ex. ene&food

2021 2022
-30

-25

-20

-15

-10

-5

0

5

10

15

1aM
1aE
1bM
1bE
2a
2b
3aS
3aT
3bS
3bT
4a
4b
5
6aL
6aS
6bL
6bS
7
All

2021 2022
-10

-8

-6

-4

-2

0

2

1aM
1aE
1bM
1bE
2a
2b
3aS
3aT
3bS
3bT
4a
4b
5
6aL
6aS
6bL
6bS
7
All

Note: The figure shows the cumulative sum of squared forecast errors of the model version incorporating expectations minus the
CSSFE of the version not incorporating such information. The sums are computed over 2020Q4-2022Q2. The numbers denote
the model classes: 1: ADL models with time-varying trend inflation, 2: ADL models with time-varying trend inflation, time-varying
coefficients and stochastic volatility, 3: Bayesian VARs with democratic priors, 4: Bayesian VARs with time-varying trends, 5:
Phillips curves with constant coefficients, 6: Bayesian VARs with Minnesota priors. ’a’ and ’b’ refer to univariate and multivariate
models, respectively.
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Summary and conclusion

Incorporating information from mean expectations embedded in professional
forecasts helps across models/methods/countries. The gains are modest.

The expectations of firms and households and those derived from financial
market prices (inflation-linked swap rates) do not improve forecast accuracy.

Models perform somewhat worse than the SPF in terms of point forecast but the
SPF tends to be overconfident.

It is usually better to “correct” the model forecasts (using the SPF mean) before
combining them.

SPF seems useful for improving model forecasts also after 2019; also in terms of
variance?

The results indicate that models augmented by inflation expectations of professional
forecasters should be included in inflation forecaster’s toolkit as those measures of
expectations appear to contain information that is difficult to “replicate” by models.
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Ongoing work

Role of surveys during the pandemic and the high inflation period
Controlling for model modifications in order to deal with atypical observations, as in e.g.
[Stock and Watson, 2016, Carriero et al., 2022, Bobeica and Hartwig, 2022]

How to derive future paths for survey expectations?
Are they behind the curve? (as in the 70 and 80s, see [Mertens, 2016])

Role of surveys in predicting tails of inflation
ESCB Expert Group on Macro at Risk

New ways to incorporate off model (e.g. survey) information
Parametric tilting (to a skewed-t distribution) [Montes-Galdón et al., 2022];
see also tilting to SPF histograms [Clark et al., 2022]
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