Building Central Bank Credibility: The Role of Forecast Performance

Michael McMahon Ryan Rholes

Department of Economics University of Oxford

Motivation

- Managing expectations is crucial for the now dominate inflation-targeting framework
 - Effective communication requires credibility
 - Little is known in practice about the determinants, dynamics of central bank forecast credibility

Motivation

- Managing expectations is crucial for the now dominate inflation-targeting framework
 - Effective communication requires credibility
 - Little is known in practice about the determinants, dynamics of central bank forecast credibility

This Paper: Use a large online experiment to study how historical forecast performance impacts a central bank's forecast credibility

Motivation

- Managing expectations is crucial for the now dominate inflation-targeting framework
 - Effective communication requires credibility
 - Little is known in practice about the determinants, dynamics of central bank forecast credibility

This Paper: Use a large online experiment to study how historical forecast performance impacts a central bank's forecast credibility

We Consider:

- Forecast Performance: How does overall forecast performance influence credibility?
- ➤ *Timing*: Does the timing of forecast errors matter for a central bank's forecast credibility?
- Communication: Can central banks 'talk their way out' of a low-credibility position?

Preview of Results

Contributions

- 1. Relationship between performance and updating is flatter than theory predicts
 - Under-punish consistently poor performance
 - Under-reward excellent performance
 - Over-precision/Under-precision
- 2. Timing of errors matters a lot recent performance is key.
- 3. Communication can (sometimes) help offset poor recent performance.

Preview of Results

Contributions

- 1. Relationship between performance and updating is flatter than theory predicts
 - Under-punish consistently poor performance
 - Under-reward excellent performance
 - Over-precision/Under-precision
- 2. Timing of errors matters a lot recent performance is key.
- 3. Communication can (sometimes) help offset poor recent performance.

Implications

Credibility evolves endogenously; rebuilding credibility could be harder if errors reduce capacity of central bank to influence expectations.

Bayesian Updating

Participant *i* prior belief about inflation given by:

$$\pi_i \sim \mathcal{N}\left(\bar{\pi}_i, \frac{1}{\alpha_i}\right),$$
 (1)

- $ightharpoonup \bar{\pi}_i$ is *i*'s initial point forecast
- $ightharpoonup \alpha$ is a measure of *i*'s forecast precision.
- ▶ The central bank provides a potentially biased signal:

$$\pi_{cb} = \pi + \tilde{\epsilon}, \ \ \tilde{\epsilon} \sim \mathcal{N}\left(\gamma, \frac{1}{\beta}\right).$$
 (2)

- \triangleright β is related to the precision of the central bank forecast
- $ightharpoonup \gamma$ is a possible systematic bias in the CB's inflation forecast.
 - Assume $\gamma = 0$ for now.

The Role of Bias

► The optimal Bayesian inflation forecast:

$$\mathbb{E}(\pi|\pi_{cb}) = \frac{\alpha \bar{\pi}_i + \beta \pi_{cb}}{\alpha + \beta} \tag{3}$$

Optimal update rate:

$$u_i^* \equiv \frac{\mathbb{E}(\pi | \pi_{cb}) - \bar{\pi}_i}{(\pi_{cb} - \bar{\pi}_i)} = \frac{\beta}{\alpha + \beta}$$
 (4)

- if $\gamma \neq 0$ use adjusted signal $(\pi_{cb} \gamma)$
- 1. If $\beta \to \infty$, $\alpha \to 0 \Rightarrow u_i^* = 1 = 100\%$.
- 2. For any β , $\alpha \uparrow$ (prior precision \uparrow), update less $(u_i^* \downarrow)$.
- 3. For any α , $\beta \uparrow$ (signal precision \uparrow), update more $(u_i^* \uparrow)$.

- 1. Short survey
 - Economics knowledge
 - Understanding of and trust in various public institutions
 - ▶ Preferences for obtaining economic information
 - Familiarity with prevailing economic conditions

- 1. Short survey
- 2. Instructions for inflation forecasting task (accessible later)
 - Information they will get
 - ▶ How to interact with the available information
 - How to interact with our software
 - How we incentivized their forecasts

- 1. Short survey
- 2. Instructions for inflation forecasting task (accessible later)
- 3. Comprehension quiz
 - 5 questions designed to test subjects' understanding of our experimental instructions
 - Must answer all five questions correctly to proceed
 - ▶ More than 2 submissions with at least one wrong answer ⇒ Removed.

- 1. Short survey
- 2. Instructions for inflation forecasting task (accessible later)
- 3. Comprehension quiz
- 4. Forecasting task
 - ► 3 × decision periods

- 1. Short survey
- 2. Instructions for inflation forecasting task (accessible later)
- 3. Comprehension quiz
- 4. Forecasting task
- 5. Informed which forecast had been selected for payment
- 6. Non-compulsory survey-of-decisions

Decision Periods

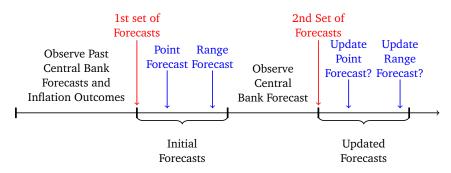


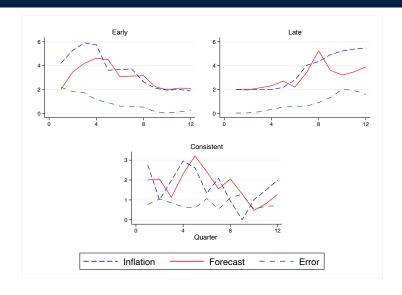
Figure: Experimental Timeline: A single decision period

- ▶ Decision periods are independent
- ▶ Randomly select one forecast for bonus payment

Incentives

Incentiving point forecasts:

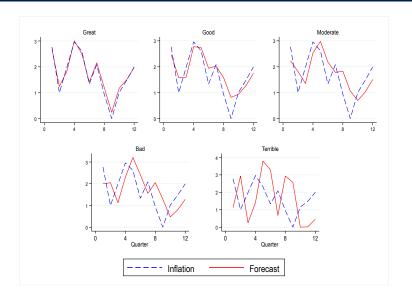
$$F_{i,13} = 2^{-|\mathbb{E}_{i,12}\{\pi_{13}\} - \pi_{13}|}. (5)$$


- Perfect forecast yields $F_{i,13} = 1$
- $ightharpoonup F_{i,13}$ reduced by half each 1pp increase in forecasts error
- ► Range forecast:

$$U_{i,t}(r_{i,t}) = \begin{cases} 0 & \pi_{i,13} \notin [\underline{u_{i,t}}, \overline{u_{i,t}}] \\ \phi\left(\frac{1}{1+r_{i,t}}\right) & \pi_{i,13} \in [\underline{u_{i,t}}, \overline{u_{i,t}}]. \end{cases}$$
 (6)

- On average, participants
 - earned \$3.75 for participation, \$1.25 for bonus
 - equates to \$13.20 per hour, on average
 - took 10-15 minutes to complete the experiment

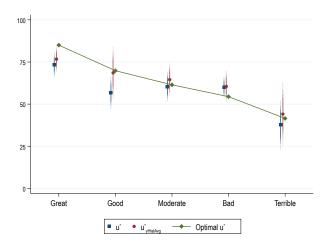
3 Core Histories

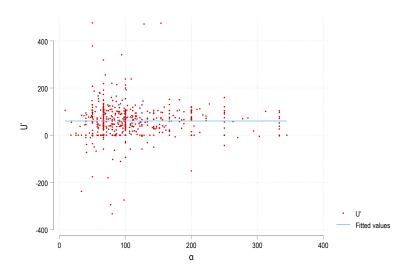

All Histories

	Summary of Forecast Performance by History (bps)					
	Year 1	Year 2	Year 3	Full Sample	$\gamma_{HistAvg}$	$\gamma_{LastYear}$
Calibration Data	110	95	34	80		
Consistent - Great	13	13	13	13	06	08
Consistent - Good	36	36	36	36	10	05
Consistent - Moderate	60	60	60	60	06	-07
Consistent - Bad	83	83	83	83	02	-19
Consistent - Terrible	171	171	171	171	-06	-42
Consistent - Bad	83	83	83	83	02	-19
Early	171	65	13	83	-51	12
Late	13	65	171	83	-52	-171

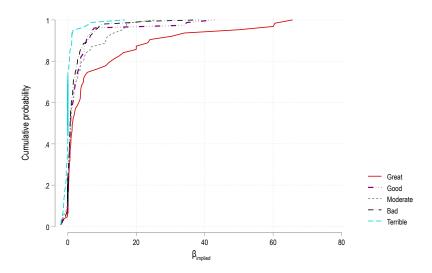
Numbers are average absolute forecast error in basis points.

Forecast Performance


Experimental Design - Forecast Performance


Experimental Design - ForecastPerformance

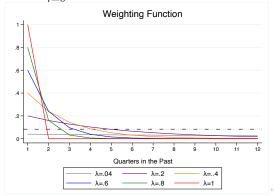
	Treatment Summary: Forecast Performance				
	History 1	History 2	History 3	Sample Size	
T1a	Early	Late	Great	46	
T1b	Late	Early	Great	44	
T2a	Early	Late	Good	44	
T2b	Late	Early	Good	46	
ТЗа	Early	Late	Moderate	33	
T3b	Late	Early	Moderate	44	
T4a	Early	Late	Bad	97	
T4b	Late	Early	Bad	76	
T5a	Early	Late	Terrible	46	
T5b	Late	Early	Terrible	50	


Results - Forecast Performance

Results - Forecast Performance

Results - Forecast Performance

Effect of Timing

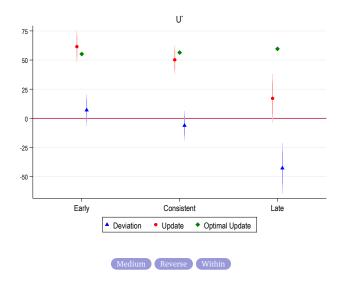

What effect of time profile of errors?

• Use the full history to estimate β :

$$\beta^{-1} = \frac{\sum_{j=1}^{j=12} |\mathbb{E}_{j-1}^{CB}(\pi_j) - \pi_j|}{12}.$$
 (7)

Or, weight more heavily recent performance:

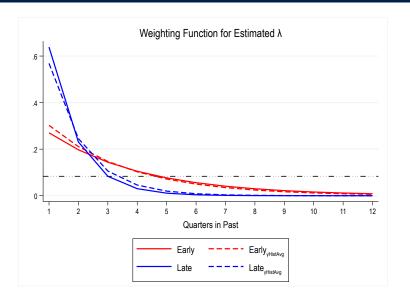
$$\beta^{-1} = \lambda \sum_{i=0}^{j=11} (1 - \lambda)^j |\mathbb{E}_{t-2-j}^{CB} (\pi_{t-1-j}) - \pi_{t-1-j}|$$
 (8)



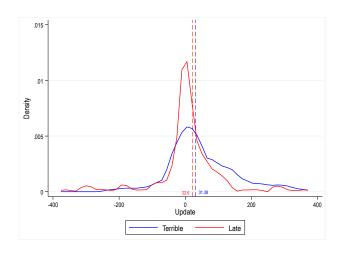
Treatments - Timing

Treatment Summary - Timing					
History 1	History 2	History 3	Sample Size		
 Early	Late	Consistent	97		
Early	Consistent	Late	94		
Late	Early	Consistent	80		
Late	Consistent	Early	88		
Consistent	Early	Late	79		
Consistent	Late	Early	91		

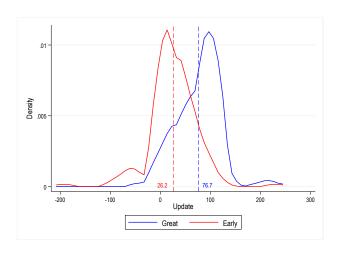
Results - Timing



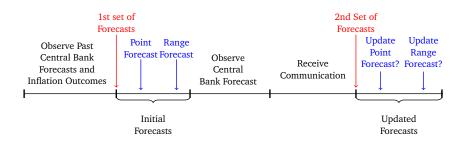
Results - Timing - Estimated λ


	γ_0	$\gamma_{HistAvg}$
Early	0.245	0.275
	(0.0170)	(0.0160)
Consistent	0.523	0.511
	(0.022)	(0.022)
Late	0.622	0.560
	(0.0198)	(0.0222)

Standard errors in parentheses


Results - Timing

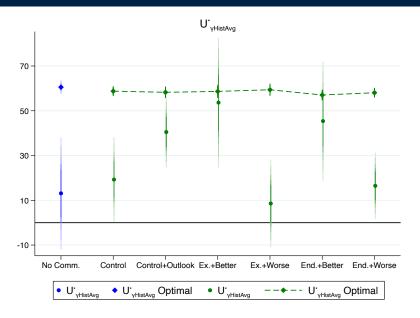
Dynamics of Perceived Credibility


Dynamics of Perceived Credibility

Effect of Timing

Experimental Design - Communication

We introduce written comms. into *Late* in *E*,*C*,*L*


Experimental Design - Communication

- Consider 6 written reports:
 - Control: General description of central banking
 - Control + Outlook: Includes outlook on inflation that matches graphical forecast
 - Exogenous + Relative Performance: Drop in forecast performance resulted from exogenous shock and bank has performed better or worse than counterparts
 - ► Endogenous + Relative Performance: Drop in forecast performance resulted from *endogenous forces* and bank has performed better or worse than counterparts

Experimental Design - Communication

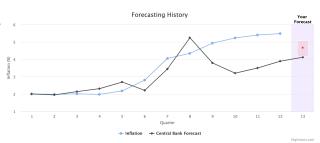
Treatment Summary - Communication					
Name	Sample Size	Flesh-Kincaid			
		Score	Reading Level		
Control	160	8	10th-12th		
Control + Outlook	151	8.3	10th-12th		
Exogenous + Better	131	8.5	10th-12th		
Exogenous + Worse	152	8.5	10th-12th		
Endogenous + Better	157	8.4	10th-12th		
Endogenous + Worse	137	8.4	10th-12th		

Results - Communication

Conclusion

What have we learned so far?

- Forecast performance matters but not as sharply as theory predicts
- Credibility is endogenous, dynamics are asymmetric:
 - Recency bias
 - Credibility takes longer to build than to lose
- ► MPRs, IRs, etc. are valuable as a way of rationalizing the past and reinforcing outlook

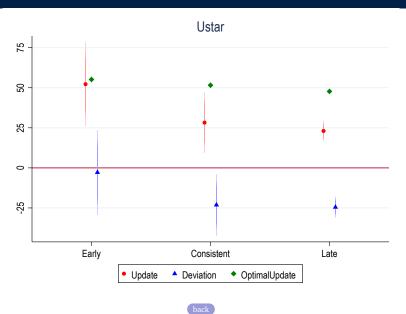

Implications

Credibility evolves endogenously; rebuilding credibility could be harder if errors reduce capacity of central bank to influence expectations.

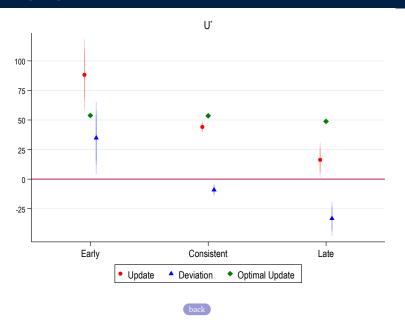
Screenshot for Comms

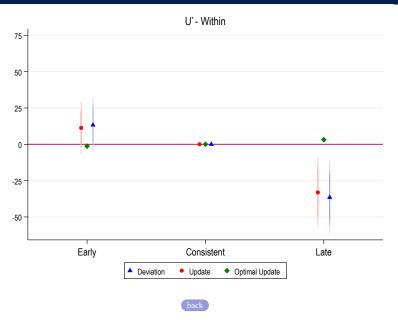
Central Bank Announcement

Avg. Forecast Error First Year: .13 Second Year: .65 Third Year: 1.71 Full History: .83


Central Bank Announcement

The Fed uses interest rate policy to stabilize prices and keep employment high. We base monetary policy on how healthy the economy is now and how healthy we think it will be in the future. We use forecasts to guide our decisions. We do our best when making forecasts but the world is uncertain, and forecasts are never perfect.


Over the last year, our forecasts underpredicted inflation. This is because the pandemic lasted longer than initially expected and caused supply shortages. Our forecasts over this period were more accurate than private sector forecasts and other central banks. Our best quest is that inflation will decrease next quarter.


Longer-term Forecasts

Changing the direction of forecast errors

Within-subject forecast credibility measure

