Discussion
 Bank Intermediation Activity in a Low Interest Rate Environment

by Leonardo Gambacorta, Michael Brei and Claudio Borio
SUERF/Banca d'Italia E-Workshop: "The effectiveness of monetary policy in a low interest rate environment", 18-19 November 2020.

Luisa Corrado

Low Interest Rates and Balance Sheet Effects (Brei, Borio and Gambacorta, 2019)

Challenging themes and v /interesting results in both papers

- With compressed profit margins banks move away from traditional loan-making business to other earning assets (e.g. stocks, bonds).
- They hold more liquid assets, as central banks tend to increase the volume of excess reserves in the system, which banks are forced to absorb.
- Rely more on stable forms of funding, such as deposits and fixed-rate long-term debt, rather than on short-term variable-rate funding.
- Readjustments lead to lower risk profile and risk-weighted assets.

Low Interest Rates and Dividends (Gambacorta, Oliviero and Shin, 2020)

- With perspective compressed profit margins the price-to-book ratio of equity falls so banks have a greater propensity to pay out dividends.
- Consequences: capital erosion.
- Regulatory solution: suspend dividend distributions and share buybacks to restore capital requirement standards. Role of endogenous capital requirements and role of bank capital (Gambacorta and Shin, 2016).
- Counterfactual: Over the period 2008-20, bank lending capacity would have been around 9% greater with dividend suspension.

Financial Cycles: Credit-to-GDP Gap (BIS)

Tier1 Capital to Risk Weighted Assets

- Italy — France - United Kingdom - Germany — Japan — United States

Bank Equity in a Low Interest Rate Environment (Corrado and Schuler 2019, ECB WP 2019)

- Bank profits depend on interest rate margins, adjustment costs related to deviation from capital requirement, τ_{t}, and monitoring costs, $w_{t} m_{t}$.

$$
\begin{equation*}
\Pi_{t}^{B}=R_{t}^{L} \frac{L_{t}}{P_{t}}-R_{t}^{D} \frac{D_{t}}{P_{t}}-\frac{\kappa_{e}}{2}\left(\frac{e_{t}}{L_{t}}-\tau_{t}\right)^{2}-w_{t} m_{t} \tag{1}
\end{equation*}
$$

- The share of profits, ϕ_{Ψ}, paid out as dividends

$$
\begin{equation*}
\Pi_{t}^{\Psi}=\phi_{\Psi} \Pi_{t}^{B} \tag{2}
\end{equation*}
$$

- The remaining share, $\left(1-\phi_{\Psi}\right)$, is booked into bank's Tier 1 equity e_{t}. With a higher fraction of dividends, ϕ_{Ψ}, there is more capital erosion

$$
\begin{equation*}
e_{t}=e_{t-1}+\left(1-\phi_{\Psi}\right) \Pi_{t-1}^{B} \tag{3}
\end{equation*}
$$

Capital Erosion: Actions

How to avoid capital erosion in a downturn:

- Dividend suspension $\left(\phi_{\Psi}=0\right)$: direct but could be problematic in terms of policy versus banks' shareholders.
- Countercyclical Capital Requirement (CCyB):

$$
\tau_{t}=\bar{\tau}+\kappa\left(\frac{L_{t}}{Y_{t}}-\frac{L}{Y}\right)
$$

Indirect effect of CCyB on price-to-book ratio (PTB), dividend payments and equity (e)

$$
\frac{L_{t}}{Y_{t}} \downarrow \tau_{t} \downarrow \Pi_{t}^{B} \uparrow P T B_{t} \uparrow \Pi_{t}^{\psi} \downarrow e_{t} \uparrow
$$

Endogenous Capital Req. and Financial Cycles -Corrado and Schuler ECB-WP

Note: Two-year moving average of deviations in total credit-to-GDP.

Endogenous Capital Req. and the Macroeconomy

Note: Two-year moving average of deviations in consumption, inflation and loans (Corrado and Schuler, ECB WP 2019).

Endogenous Capital Req. and Welfare

- Superior welfare outcome of endogenous capital requirement

	Output volatility	Inflation volatility	Welfare loss	Δ Loss $^{[1]}$
Benchmark	0.148	0.052	0.054	-
Monetary Policy Reaction	0.159	0.052	0.057	1.1%
Fixed Capital Req.	0.161	0.053	0.048	-14.7%
Endogenous Capital Req.	0.113	0.041	0.041	-27.8%

${ }^{[1]}$ Relative to Benchmark. (Corrado and Schuler, ECB WP 2019)

Evidence during the Pandemic (Chadha et al., 2020)

- US broad money (M2) increased by 20% in 6 -months
- Bank deposits which increased 16%
- Reserves increased by 100% over the same period

Note: US Money Aggregates (Chadha et al., 2020).

Conclusions

- Very interesting papers. The empirical results suggest a way forward in macro-models.
- Present results are driven by financial sector supply side shock.
- But in the most recent juncture shocks come from the real sector.
- Because of the shutdown shock the reduction in loans is demand-driven.
- Because of the lockdown shock velocity of money has gone down: hence, the increase of deposits is supply-driven.
- Effects on profit margins? Are they going up? Impact on PTB ratio, dividend and equity.
- Interesting to see how the analysis on balance sheet effects and dividend payment policy unfold with more recent microdata.
- Effects of large-scale asset purchases and fiscal stimulus (Coenen, Montes-Galdon, Smets (2020), ECB EWP 2352)

Thank you

Luisa Corrado
University of Rome Tor Vergata
Department of Economics and Finance
E-mail: luisa.corrado@uniroma2.it
https://sites.google.com/site/luisacorrado/

Corrado, L. and Schuler T. (2019): Financial cycles, credit bubbles and stabilization policies. ECB Working Paper No 2463

Chadha, J, Corrado, L., Meaning J and Schuler T. (2020): Policies in a Pandemic: a Quantitative Evaluation, mimeo.

Model: Corrado and Schuler 2020

