Discussion of "Monetary policy options in a 'low for long' era" by R. Harrison, M. Seneca and M. Waldron

19 November 2020

Andreas Tischbirek University of Lausanne

SUERF/Banca d'Italia E-Workshop

Overview

How effective are different types of monetary policy at stabilising inflation and output in an environment with a low r^* ?

- Small-scale model
- Calvo rigidities in goods market, efficient steady state
- Persistence through
 - Consumption habits
 - Fraction of rule-of-thumb price setters
 - Price indexation
- QE in the form of long-term government bond purchases
 - Long end of the yield curve is a separate policy instrument due to portfolio costs that depend on bond positions
- Odyssean forward guidance

Model

- Assumption-No rule-of-thumb firms, no price indexation, no habits
- Simplified model

$$\begin{aligned} \pi_t &= \bar{\beta} \mathbf{E}_t \pi_{t+1} + \kappa x_t + u_t \\ x_t &= \alpha \mathbf{E}_t x_{t+1} - \tilde{\sigma} (r_t^e - \mathbf{E}_t \pi_{t+1} - r_t^*) \\ r_t^e &= r_t^s - \phi_1 q_t - \phi_2 (q_t - q_{t-1}) + \phi_3 \mathbf{E}_t (q_{t+1} - q_t) \end{aligned}$$

- Policy tools
 - Short-term interest rate r_t^s
 - Long-term bond purchases q_t

Policy

Loss function

$$L_{t} = E_{t} \sum_{s=t}^{\infty} \beta^{s-t} \left[\pi_{s}^{2} + \lambda_{x} x_{s}^{2} + \lambda_{q} q_{s}^{2} + \lambda_{\Delta q} \left(\Delta q_{s} \right)^{2} + \lambda_{\Delta r} \left(\Delta r_{s} \right)^{2} \right]$$

• Constraints under different policy approaches

	Strd. Policy	QE	Time consistent
"Pre-crisis consensus"	$r_t \ge zlb$	$q_t = 0$	yes
"Post-crisis revealed pref."	$r_t \ge zlb$	$0 \leq q_t \leq ar{q}$	yes
"Forward guidance"	$r_t \ge zlb$	$q_t = 0$	no

Results for the UK

Figure: Effect of different policy approaches for $r^* = 0$

Comments

Simplified model

$$\begin{aligned} \pi_t &= \bar{\beta} \mathbf{E}_t \pi_{t+1} + \kappa x_t + u_t \\ x_t &= \alpha \mathbf{E}_t x_{t+1} - \tilde{\sigma} (r_t^e - \mathbf{E}_t \pi_{t+1} - r_t^*) \\ r_t^e &= r_t^s - \alpha_1 q_t - \alpha_2 (q_t - q_{t-1}) + \alpha_3 \mathbf{E}_t (q_{t+1} - q_t) \end{aligned}$$

- Key challenges
 - 1. Forward guidance puzzle \Rightarrow Role of expectations
 - 2. Slope of the Phillips curve

Role of Expectations

$$x_t = \underbrace{\alpha}_{=1/(1+\epsilon_{\beta})} \mathbf{E}_t x_{t+1} - \tilde{\sigma} (r_t^e - \mathbf{E}_t \pi_{t+1} - r_t^*)$$

- Commitment to interest rate path far in the future has implausibly large effects (Del Negro et al., 2015)
- Result of forward looking nature of dynamic IS curve (McKay et al., 2016)
- Issue mitigated by "discounted Euler equation" (McKay et al., 2017)
 ⇒ Can be seen as result of bigger incomplete markets model
 - How much discounting is plausible?
 - Based on micro-foundations in McKay et al. (2017), $\alpha \in \{0.94; 0.97\} \Rightarrow \epsilon_{\beta} \in \{0.03; 0.06\}$
 - Here, based on Gabaix (2020), $\epsilon_{\beta} = 0.175$

- Thought experiment as in Eggertsson and Woodford (2003) and McKay, Nakamura and Steinsson (2017), among others
- Consider calibrated/estimated
 - Dynamic IS curve
 - Phillips curve

from simplified model (for the US)

- Conventional policy tool set according to r^s_t = max {0, r^{*}_t + φπ_t}
- Shock
 - r_t^* drops to annualised value of -2%
 - Remains at low value with probability $\lambda = 0.9$ each quarter
 - Reverts to positive pre-crisis value with probability $1 \lambda = 0.1$ (absorbing state)

Slope of the Phillips curve

$$\pi_t = \bar{\beta} \mathcal{E}_t \pi_{t+1} + \frac{\kappa}{\kappa} x_t + u_t$$

- Debated following "missing disinflation" in the wake of the Great Recession and "missing reinflation" in late 2010s
- Limited-information estimation of κ
 - Based on macro data, parameters of the NKPC weakly identified (Mavroeidis, Plagborg-Møller, Stock, 2014)
 ⇒ Wide range of estimates
 - Recently, identification based on state-level data from the US (e.g. Hazell et al., 2020) $\Rightarrow \hat{\kappa} \approx 0.008$
 - Here, *κ* = 0.026

