

Forecasting under extreme uncertainty SUERF webinar Economic forecasting during and after corona 10.09.2020

Juha Kilponen Monetary Policy and Research Department, Bank of Finland

Topics

 Immediate challenges to nowcasting and forecasting due to the corona crisis
 Real-time economic indicators Role of sectoral analysis Linking firms' financial analysis, banking sector analysis and conjunctural analysis and forecasting

- Long term effects of corona crises
 - Implications for estimates of potential output and for inflation forecasting

The role of real time economic indicators

- Turning to non-standard and high-frequency data became necessary to assess economic developments in quasi-real time
 - Traditional monthly indicators were not able to react quickly enough to the changing economic situation due to publication lags
 - Weekly trackers of economic activity (e.g. Federal Reserve Bank of New York)
- Increasing use of less common data sources such as electricity consumption, payments card data, traffic data, unemployment benefit data, temporary lay-offs, surveys, epidemiological data
- Combination of traditional and less common indicators

Example I: MIDAS model with financial market data

- Mixed Data Sampling models allow data of different frequencies to enter a model, i.e., we can forecast quarterly GDP using monthly, weekly or daily data.
 - MIDAS models thus allow a variety of indicators, also high frequency ones, to be included into one forecasting model.
- We used a regression model with a MIDAS lag polynomial structure to forecast Finnish quarterly GDP growth using (a principal component of) <u>daily</u> financial market data.
- Financial market data turned out to be useful for nowcasting the turning point in Finnish GDP growth
 - The MIDAS model could identify a downturn in GDP already in early March, while other nowcasting models did not recognize a downturn until April.
- Financial market data was, however, unable to account for the severity and persistence of the economic downturn, compared to other nowcasting models.

Example II: BVAR with real-time data

- Use two sets of variables to predict industrial production
 - 1. Traditional indicators (Stock price index, interest rate spreads, PMI, confidence indicators)
 - 2. Real-time indicators (Electricity usage, truck traffic)
- Traditional indicators predict the current and future dynamics
- Real-time indicators predict the current dynamics <u>only</u>
- Enhanced the precision by setting priors on how the industrial production reacts to different types of indicators

Role of sectoral analysis

- Containment measures hit different sectors very asymmetrically
- Not a typical business cycle shock, so cannot trust usual business cycle moments (and therefore models) when making the short term macroforecasts
- More disaggregated and timely information needed
 - Frequently updated specialized surveys
 - Firm and household level data
- How strong is the cash position of the firms? How long can they last without or almost without cash revenues? What are their direct financing needs?

Example from a specialized survey to firms

- Survey of some 1,600 SMEs by state-owned investment company
- Firms evaluated their changes in turnover and responses to decline in turnover (adjusting their costs eg. labour costs, other costs) due to Covid19
- This was combined with financial statements of firms (2018) to assess liquidity situation of the firms to evaluate risk of bankruptcy under different lock-down scenarios

Linking firms' financial analysis, banking sector analysis and conjunctural analysis

- At the BoF and FSA we did put an extra effort to get more frequent information on banks NFC lending activities related to corona crises
 - It became a valuable source of information on firm's financing needs as well as on the impact of different support measures
- We also used empirical macro models to predict loan losses conditional on different macroeconomic scenarios
 - Challenge there continues to be that corona shock is very unusual

Long term growth effects of corona crises (?)

- Large shocks often lead to lower capital investment and capital stock
 - Financial frictions & borrowing constraints & precautionary savings
 - The re-evaluation of tail risks (scarring effect)
- Shortfall in demand → hysteresis in productivity & loss in potential output growth
 - Profits ↓ R&D ↓ technology adoption↓
 → productivity growth ↓

Cumulative labor productivity response after epidemics:

Source: World bank.

What about inflation?

Positive

- Firm exit → fewer competition → increased price pressures
- Pent-up demand in the aftermaths of the pandemic + temporarily reduced supply
- Supply chain disruptions
- Deglobalisation

Negative

- Magnitude, depth and protracted nature of the crisis
- Persistent shifts in consumption behaviour
- Risk of inflation expectations becoming anchored at a lower level
- Bankruptcies + short-time work + unemployment → weakened aggregate demand
- Uncertainty: precautionary savings as insurance; delay of big ticket items
- Lower external cost pressures due to reduced global demand

General lessons

- When economic swings are unusually large, high frequency and more disaggregated data as well as surveys and direct contacts to stakeholders are needed to <u>nowcast</u> the economic situation
- But it is too early to judge whether these new approaches improve our forecasting ability also in the short to medium term
- Covid19 will leave permanent mark to the economy
 - Consumption habits, technologies and production sets are changing

Thank you!

Additional slides

How much help of forecasting with electricity consumption?

