Passive Funds Actively Affect Prices: Evidence from the Largest ETF Markets

Karamfil Todorov

London School of Economics and Political Science

February 2020

- Recent years have seen a surge in passive investment
 - ETFs: \$0.2 trillion of AUM in 2004; \$5 trillion in 2018
 - Commoditization makes investing simple and cost-efficient, but could reduce price informativeness and create systemic risks
- ETFs in VIX and commodities beneficial setting to study price impact of passive funds
 - Larger fraction of the market compared to stocks. VIX: 25%, S&P 500: ${<}2\%$
 - Easier to measure non-fundamental price distortions
 - Price impact of different types of trading. Leverage-induced trading

1/10

Preview of main results

- ETFs affect prices of underlying assets
 - Trading demand from ETFs is strongly related to prices
 - Propose a model-independent approach to replicate the value of a VIX futures. Isolate **non-fundamental part of the VIX futures premium** of 18.5 % p.a., strongly related to ETF demands

Decompose ETF demands

- Calendar rebalancing
- Flow rebalancing
- Leverage rebalancing

• Analyze the risk of leverage rebalancing

- Amplifies price changes and introduces unhedgeable risks for ETF counterparties
- Document **new ETF anomaly**: trading against leverage rebalancing earns large abnormal returns and SR-s above two across markets
- Puzzling: exposed to 'right-way risk'

Isolate ETF-induced price distortions

- ETF price impact manifests itself through an increase in the non-fundamental part of prices
- **Model-independent** approach for replicating the fundamental value of a VIX futures contract
 - Construct a synthetic futures contract from option prices
 - No parametric or distributional assumptions: simply use the definition of variance. Robust to jumps
- Price of the replicated contract was close to that of the traded one before the introduction of ETFs but diverged consistently thereafter
- The gap between the two prices (18.5% per year, on average) is strongly related to ETF demand

- Propose a novel decomposition of ETF demand
- **Calendar rebalancing**: arises because futures are finite-maturity instruments. ETFs have to gradually roll their exposure
- Flow rebalancing: driven by fund flows
- Leverage rebalancing: arises due to the maintenance of a constant daily leverage by leveraged ETFs
 - Leveraged ETFs aim to deliver multiples of the daily return of their benchmark index. E.g., if the benchmark index goes up by 10%, a two-times leveraged ETF should return 20%.
 - New type of mechanic institutional demand
 - Has the largest effects on the gap

- Amplifies price changes: ETFs mechanically have to buy after price increases and sell after price decreases
- Trading against leveraged ETFs
 - Providing liquidity to investors with short horizons, who follow momentum-like strategy
 - Introduces unhedgeable risks for ETF counterparties (negative convexity)
- Potential distorting effect on prices can be large even in a market with a 0 net share of ETFs
 - VIX in February 2018: net market share of ETFs was close to 0
 - But potential price impact due to leverage rebalancing was **60% of the total market** size

Understanding the risks of leverage rebalancing

- Take an arbitrageur who trades against a pair of equal-sized ETFs with opposite leverages (e.g., L = 2 and L = -2)
 - Is she perfectly hedged by matching L = 2 demand with L = -2? No!
 - Not a zero-return strategy, but a bet on variance
 - Lose from price jumps, gain from small price fluctuations (contrarian)

- Hedging the variance exposure is not easy
- Propose a simple strategy to understand the risks of trading against leverage rebalancing
- Document a novel ETF-related anomaly across markets
 - Short a pair of ETFs with opposite leverages (e.g., 2 and -2), to approximate liquidity provision to leveraged ETFs
 - Surprisingly, the returns on such a strategy are not zero, but are consistently positive across markets. α of 16.6% for VIX, 42.3 % for natural gas. SR of 0.89 and 2.59
 - Puzzling: exposed to 'right-way risk'

K Todorov

The short-both strategy – intra-day returns

- Price is strongly related to ETF demand, when ETFs control a large share of the market
 - Leverage-induced rebalancing creates a feedback effect on prices
 - Contributes to the policy debate on the desirability of commoditization and the general shift towards passive investing
- More nuanced view of VIX and the VIX futures premium
 - VIX and its derivatives barometer of financial stress, used in various risk models
 - But prices are significantly disrupted by non-fundamental mechanical ETF demand
- **Novel decomposition** of ETF trading demand. Develop a strategy to capture the risk premium of leverage rebalancing

Thank you for your attention and useful comments!

Appendix

- VIX and commodity ETFs obtain price exposure by entering into futures contracts
 - follow a benchmark based on the first two futures contracts.
 - roll daily
- Some ETFs also aim to maintain a constant daily leverage ratio, L
 - Example: benchmark return is 10%, a double-leveraged (L = 2) ETF should return 20%; an inverse ETF (L = -1) should return -10%

VIX futures prices – informative about fundamentals?

- Test whether F_{t,T} is informative about the fundamental spot at maturity S_T, or is influenced by premiums
- Use the identity $F_{t,T} S_t = F_{t,T} F_{T,T} + S_T S_t$
- Check whether today's (negative) basis $F_{t,T} S_t$ predicts changes of the futures (F) or the spot VIX (S), or both

13/10

K. Todorov

Passive funds actively affect prices

- Basis of short maturities predicts futures but not spot
- Front end of the futures curve is mostly influenced by ETFs

Spot VIX on basis: $S_T - S_t = \alpha_1 + \beta_1 \cdot (F_{t,T} - S_t) + \epsilon_{1,t}$												
	T=1m	T=2m	T=3m	T=4m	T=5m	T=6m	T=7m	T=8m				
β_1	0.02	0.27	0.64***	0.72***	0.84***	0.94***	0.98***	1.01***				
R ²	0.00	0.03	0.09	0.10	0.14	0.18	0.23	0.27				
VIX futures on basis: $F_{T,T} - F_{t,T} = \alpha_2 + \beta_2 \cdot (F_{t,T} - S_t) + \epsilon_{2,t}$												
	T=1m	T=2m	T=3m	T=4m	T=5m	T=6m	T=7m	T=8m				
β_2	-0.98***	-0.73***	-0.36***	-0.28***	-0.16**	* -0.06**	-0.02	0.01				
R ²	0.14	0.10	0.04	0.04	0.02	0.01	0.00	0.00				

Synthetic Basis regressions

• Decompose basis into premiums and spot change:

$$F_{t,T} - S_t = \underbrace{F_{t,T} - E_t^{Q}(S_T)}_{\text{ETF Futures gap (EFG)}} + \underbrace{E_t^{Q}(S_T) - S_T}_{\text{Realized VIX Premium}} + \underbrace{S_T - S_t}_{\text{Spot VIX change}}$$

• $F_{t,T}$ is influenced by ETF demand

- E^Q_t(S_T) fundamental value, computed from a non-ETF-influenced market
- $F_{t,T} E_t^Q(S_T) \neq 0$ due to market segmentation. Non-fundamental **ETF futures gap (EFG)**

Computing $\mathrm{E}^{\mathrm{Q}}_t(\mathcal{S}_{\mathcal{T}}) = \mathrm{E}^{\mathrm{Q}}_t(\mathcal{VIX}_{\mathcal{T}_1 o \mathcal{T}_2})$

• Using the definition of variance:

$$\operatorname{Var}_{t}^{Q}(V|X_{T_{1}\to T_{2}}) = \operatorname{E}_{t}^{Q}\left(V|X_{T_{1}\to T_{2}}^{2}\right) - \left(\operatorname{E}_{t}^{Q}(V|X_{T_{1}\to T_{2}}^{2})\right)^{2}$$
$$\iff \operatorname{E}_{t}^{Q}(V|X_{T_{1}\to T_{2}}) = \sqrt{\operatorname{E}_{t}^{Q}(V|X_{T_{1}\to T_{2}}^{2}) - \operatorname{Var}_{t}^{Q}(V|X_{T_{1}\to T_{2}}^{2})}$$

• First term under the square root is forward $VIX^2_{T_1 \rightarrow T_2}$:

$$(T_2 - T_1) \mathbf{E}_t^{\mathbf{Q}} (VIX_{T_1 \to T_2}^2) = (T_2 - t) \mathbf{E}_t^{\mathbf{Q}} (VIX_{t \to T_2}^2) - (T_1 - t) \mathbf{E}_t^{\mathbf{Q}} (VIX_{t \to T_1}^2)$$

$$\underbrace{VIX_{t \to T_1}^2 \quad VIX_{T_1 \to T_2}^2}_{\mathbf{V}IX_{t \to T_2}^2}$$

Second term is a static portfolio of OTM VIX options:

$$\operatorname{Var}_{t}^{Q}(VIX_{T_{1}\to T_{2}}) = 2R_{f,t\to T_{1}}\left(\int_{K=0}^{F_{t,T_{1}}} P_{t}(K,T_{1})dK + \int_{K=F_{t,T_{1}}}^{\infty} C_{t}(K,T_{1})dK\right)$$

17/10

Passive funds actively affect prices

VIX ETF Futures gap $(F_{t,T} - E_t^Q(S_T))$

EFG for other maturities

19/10

- Model-independent. Robust to jumps Derivation for jumps Robust to jumps
- Possible explanations for the gap
 - Discretization error in computing $\operatorname{Var}_t^Q(VIX_{T_1 \to T_2})$. But as calls and puts are convex, that would push EFG even higher
 - Liquidity concerns and funding constraints
 - Difference in margin requirements
 - Hedging pressure in the options market
 - Using forward variance swaps instead of options mitigates some of these problems. Produces even higher gap
 - Presence of ETFs in the VIX futures market

EFG $(F_{t,T} - E_t^Q(S_T))$ and demand of ETFs $(D_{t,i}^{\$,all})$

EFG and demand, 1m

21/10

Regressions of the EFG $(F_{t,T} - E_t^Q(S_T))$

Dependent variables		$EFG_{t,1}$			$EFG_{t,2}$	
	(1)	(2)	(3)	(4)	(5)	(6)
$D_{t,i}^{\$,all}$	1.21***	0.97**		0.57***	0.45***	
.,	(0.25)	(0.40)		(0.15)	(0.12)	
$D_{t-1,i}^{\$,all}$			0.77***			0.38**
,-			(0.26)			(0.12)
$EFG_{t-1,i}$		6.03***	6.02***		3.92***	4.09***
		(0.72)	(0.73)		(0.19)	(0.22)
Liq _{t,i}		0.88**	0.75**		0.02	0.16
		(0.38)	(0.37)		(0.11)	(0.11)
TED _t		0.51	1.28		1.46***	1.24***
		(0.97)	(1.06)		(0.41)	(0.40)
α_t		0.62**	0.63**		-0.33***	0.18
		(0.24)	(0.25)		(0.12)	(0.11)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Ν	1,898	1,898	1,895	1,824	1,824	1,816
R ²	0.24	0.44	0.44	0.26	0.58	0.62

Flow Premium. Level Returns of futures on EFG

Mean squared error

- Run predictive regressions of S_T on $F_{t,T}$ and S_T on $E_t^Q(S_T)$
- $E_t^Q(S_T)$ is a better predictor of the fundamental value S_T compared to $F_{t,T}$

Calendar rebalancing

• ETFs roll from the 1st generic futures to the 2nd one. Example: Today: 50% in 1st futures, 50% in 2nd futures Tomorrrow: 45% in 1st futures, 55% in 2nd futures

In 10 business days: 0% in 1st futures, 100% in 2nd futures

• Analogous to index inclusion/exclusion for equities ETFs

Passive funds actively affect prices

Calendar rebalancing

• ETFs roll from the 1st generic futures to the 2nd one. Example: Today: 50% in 1st futures, 50% in 2nd futures Tomorrrow: 45% in 1st futures, 55% in 2nd futures

In 10 business days: 0% in 1st futures, 100% in 2nd futures

• Analogous to index inclusion/exclusion for equities ETFs

Passive funds actively affect prices

Open interest dynamics before and after ETF introduction

Calendar rebalancing forces early close of futures positions

- Some ETFs are leveraged aim to provide multiples of the daily return of the benchmark r_t
 - Leverage L > 1 or L < 0
 - Return every day Lr_t
 - E.g., if r_t is 10 %, double-long ETF (L = 2) should return 20 %

• Always rebalance in the same direction as the benchmark return

- Daily rebalancing demand is $L(L-1)AUM_{t-1}r_t$
- As $L(L-1) \ge 0 \ \forall L \notin [0,1]$, both long (L > 1) and inverse (L < 0)ETFs trade in the same direction as r_t
- Potential feedback channel for prices

Do ETFs actually do that? Math derivation Feedback channel Decomposition

Leverage rebalancing. Flow rebalancing

Demand decomposition. VIX ETFs

28/10

Regressions of EFG on components. VIX

ETFs' leverage rebalancing

Passive funds actively affect prices