Labor Mobility and Capital Misallocation in the Mutual Fund Industry

Maxime Bonelli

7th SUERF Unicredit Foundation Award - February 2020

$$
\underbrace{}_{P A R I S}
$$

Motivation

Why should we care about the allocation of assets across active fund managers?

- The mutual fund sector manages about $1 / 4$ of all financial assets of U.S. households (i.e., almost $\$ 20$ trillion)
- Active fund managers vary greatly in skills and face decreasing returns to scale: skill and scale interact
\Rightarrow The value added by the mutual fund industry is related to the allocation of capital across active managers

How is capital reallocated across managers?

Investors' fund flows reallocate capital across managers: capital goes to managers...
... however capital may be sticky and not flow efficiently across managers
\Rightarrow the match between managers and capital could also occur by managers going to capital

- This paper: external labor market. By moving across firms, managers end up managing more/less capital
- Question: Does fund managers' mobility across firms allow for a better capital allocation?

How is capital reallocated across managers?

Investors' fund flows reallocate capital across managers: capital goes to managers...
... however capital may be sticky and not flow efficiently across managers
\Rightarrow the match between managers and capital could also occur by managers going to capital

- This paper: external labor market. By moving across firms, managers end up managing more/less capital
- Question: Does fund managers' mobility across firms allow for a better capital allocation?

Empirical challenges

Studying the effect of fund managers' external mobility on the efficiency of capital allocation poses three challenges:

1. Need rich fund manager-level data to follow managers over time and across firms
2. Need to measure the effect of scale on managers' performance
3. Need exogenous variation in intensity of managers' mobility

Data

Combining three databases:

1) CRSP Survivorship Bias Free Mutual Fund Database
2) Morningstar mutual funds data
3) S\&P Capital IQ-People Intelligence: profiles of professionals with individual ID, company affiliation, office address
\Rightarrow Novel dataset featuring 7,600+ distinct active equity fund managers with a track-record of at least two years between 2000 and 2018

Manager's value added

If manager m manages an amount of capital k, generates value added:

$$
v_{m}(k)=\underbrace{k}_{\text {capital }} \times \underbrace{\alpha_{m}(k)}_{\% \text { gross alpha created by mana }}
$$

where $\alpha_{m}(k) \downarrow$ with k

Skills and the effect of scale

$$
\text { Assuming } \alpha_{m}(k)=a_{m}-b_{m} k
$$

Distribution of the estimates of a_{m}

Estimates of b_{m}

What happens when a fund manager changes firm

Managers' mobility and value added

Managers' mobility and misallocation

Non-Compete Clauses

Estimates are biased if mobility is driven by unobserved variables:

- Use staggered state-level variations in the enforceability of non-compete clauses (NCC)
- NCC: clauses in labor contracts in which the employee covenants neither to join nor to found a competing firm within $1-\mathrm{Y}$ of leaving
- State-level NCC policy changes affect the ability of fund managers employed in those states to switch mutual fund firms
\Rightarrow Test whether in states where NCC enforcement increases:

1) managers' mobility \& w.r.t. control states
2) sum of managers' value added \downarrow w.r.t. control states
3) capital misallocation across managers \uparrow w.r.t. control states

Non-Compete Clauses

Estimates are biased if mobility is driven by unobserved variables:

- Use staggered state-level variations in the enforceability of non-compete clauses (NCC)
- NCC: clauses in labor contracts in which the employee covenants neither to join nor to found a competing firm within $1-Y$ of leaving
- State-level NCC policy changes affect the ability of fund managers employed in those states to switch mutual fund firms
\Rightarrow Test whether in states where NCC enforcement increases:

1) managers' mobility \downarrow w.r.t. control states
2) sum of managers' value added \downarrow w.r.t. control states
3) capital misallocation across managers \uparrow w.r.t. control states

The effect of NCC on the \% of moving managers

The effect of NCC on state managers' value added

Concluding remarks

Does fund managers' mobility across firms allow for a better capital allocation?

1) When a manager switches firm: misallocation \downarrow and value added \uparrow
2) Using NCC enforceability changes, I show that restricting managers' mobility across firms:
\downarrow total value added by more about $\$ 200$ million in treated states compared to control states
\Rightarrow The mobility of managers across firms is a key channel through which capital is efficiently reallocated in the mutual fund sector

Appendix

Experience when managers change employer

Summary statistics of skill parameters

Group	Avg. TNA	$b_{m}\left(\times 10^{4}\right)$	$t\left(b_{m}\right)$	$a_{m}\left(\times 10^{4}\right)$						
				mean	std.	5\%	25\%	50\%	75\%	95\%
1	22	1.194	3.02	19.08	22.67	-17.62	11.26	21.88	30.98	44.96
2	31	0.462	2.19	12.91	18.45	-19.39	5.62	13.89	20.67	38.26
3	41	0.230	2.93	10.12	28.33	-17.18	1.51	8.71	14.95	43.18
4	53	0.207	3.99	9.58	18.61	-16.63	0.23	10.30	16.37	41.19
5	67	0.146	1.73	7.66	20.45	-24.05	0.62	9.21	16.44	37.81
6	84	0.137	3.80	9.53	18.90	-17.99	2.72	10.87	17.41	35.77
7	103	0.107	4.93	10.22	19.44	-16.17	4.43	11.05	17.04	30.60
8	126	0.049	2.60	3.85	21.37	-27.68	-2.52	5.54	11.57	27.50
9	154	0.051	4.18	4.91	17.28	-23.41	-1.37	6.28	12.75	31.37
10	188	0.050	5.53	7.41	17.70	-16.58	2.16	8.96	13.40	29.64
11	232	0.028	2.17	4.47	24.95	-31.58	-3.93	5.67	12.08	32.12
12	284	0.021	3.09	2.82	19.73	-22.54	-5.02	4.17	9.70	26.48
13	355	0.018	3.44	3.64	16.69	-28.13	-3.00	5.03	11.79	24.51
14	444	0.012	2.43	2.81	21.90	-30.65	-5.29	3.32	10.09	34.83
15	566	0.012	3.87	3.49	16.36	-21.44	-2.63	4.72	10.69	25.76
17	728	0.015	6.15	9.03	26.01	-16.30	2.21	8.50	13.78	31.28
17	982	0.007	4.98	3.89	14.83	-18.01	-0.46	5.83	10.19	21.32
18	1417	0.004	4.06	4.84	20.02	-18.80	-2.75	3.87	9.73	29.04
19	2373	0.002	4.89	3.81	19.15	-23.39	-2.90	4.00	9.23	24.84
20	7370	0.001	4.39	6.31	13.20	-13.65	0.64	6.53	12.08	26.40

Measuring misallocation

With estimates of a_{m} and b_{m}, one can compute for a given manager:

- marginal product of capital (MPK) when running a fund of size k :

$$
v_{m}{ }^{\prime}(k)=a_{m}-2 b_{m} k
$$

- the amount of capital k_{m}^{*} maximizing value added: ${ }^{1}$

$$
v_{m}^{\prime}\left(k_{m}^{*}\right)=0 \Rightarrow k_{m}^{*}=\frac{a_{m}}{2 b_{m}}
$$

Consider two measures of misallocation at the manager level:

- absolute value of MPK: a large underfunding/overfunding w.r.t. k_{m}^{*} should be associated with a large positive/negative MPK
- dollar spread between current and optimal TNA: $\left|k_{m, t}-k_{m}^{*}\right|$
${ }^{1} k_{m}^{*}$ is set to zero for managers who have a negative estimate of a_{m}.

Measuring misallocation

With estimates of a_{m} and b_{m}, one can compute for a given manager:

- marginal product of capital (MPK) when running a fund of size k :

$$
v_{m}^{\prime}(k)=a_{m}-2 b_{m} k
$$

- the amount of capital k_{m}^{*} maximizing value added: ${ }^{1}$

$$
v_{m}^{\prime}\left(k_{m}^{*}\right)=0 \quad \Rightarrow \quad k_{m}^{*}=\frac{a_{m}}{2 b_{m}}
$$

Consider two measures of misallocation at the manager level:

- absolute value of MPK: a large underfunding/overfunding w.r.t. k_{m}^{*} should be associated with a large positive/negative MPK - dollar spread between current and optimal TNA: $\left|k_{m, t}-k_{m}^{*}\right|$

[^0]
Measuring misallocation

With estimates of a_{m} and b_{m}, one can compute for a given manager:

- marginal product of capital (MPK) when running a fund of size k :

$$
v_{m}^{\prime}(k)=a_{m}-2 b_{m} k
$$

- the amount of capital k_{m}^{*} maximizing value added: ${ }^{1}$

$$
v_{m}^{\prime}\left(k_{m}^{*}\right)=0 \Rightarrow k_{m}^{*}=\frac{a_{m}}{2 b_{m}}
$$

Consider two measures of misallocation at the manager level:

- absolute value of MPK: a large underfunding/overfunding w.r.t. k_{m}^{*} should be associated with a large positive/negative MPK
- dollar spread between current and optimal TNA: $\left|k_{m, t}-k_{m}^{*}\right|$
${ }^{1} k_{m}^{*}$ is set to zero for managers who have a negative estimate of a_{m}.

Managers' mobility and misallocation

Preliminary evidence: panel regression that includes a post switch dummy

$$
\log (\text { Misallocation })_{m, t}=\beta \text { Switch }_{m, t}+\text { Controls }+\delta_{t}+\lambda_{m}+\eta_{\text {style }}+\theta_{f}+\epsilon_{m, t}
$$

	Misallocation					
	(1)	(2)	(3)	(4)	(5)	(6)
Switch \times Post	$\underset{(127.26)}{-382.41^{* * *}}$	$\begin{gathered} -250.79^{*} \\ (146.40) \end{gathered}$		$\underset{(101.06)}{-215.15 * *}$	$\begin{gathered} -201.53 \\ (138.82) \end{gathered}$	
SwitchPromotion \times Post			$\begin{gathered} -449.34^{* * *} \\ (136.35) \end{gathered}$			$\begin{gathered} -331.23^{*} \\ (167.49) \end{gathered}$
SwitchDemotion \times Post			$\begin{gathered} -108.27 \\ (163.67) \end{gathered}$			$\begin{gathered} -92.47 \\ (122.21) \end{gathered}$
$\log ($ TNA)		$\begin{gathered} 267.02^{* * *} \\ (46.34) \end{gathered}$	$\begin{gathered} 274.82^{* * *} \\ (47.89) \end{gathered}$		$\begin{gathered} 267.95^{* * *} \\ (59.29) \end{gathered}$	$\begin{gathered} 270.67 * * * \\ (60.00) \end{gathered}$
$\log (\mathrm{Nb}$. Fund)		$\begin{gathered} 258.02 \\ (175.22) \end{gathered}$	$\begin{gathered} 253.07 \\ (175.60) \end{gathered}$		$\begin{gathered} 247.53 \\ (223.99) \end{gathered}$	$\begin{gathered} 246.97 \\ (224.03) \end{gathered}$
Flow		$\begin{gathered} -0.67 \\ (0.70) \end{gathered}$	$\begin{gathered} -0.67 \\ (0.70) \end{gathered}$		$\begin{gathered} -0.69 \\ (0.73) \end{gathered}$	$\begin{gathered} -0.69 \\ (0.73) \end{gathered}$
\log (Tenure)		$\begin{gathered} -87.17^{* * *} \\ (23.32) \end{gathered}$	$\begin{gathered} -88.23 * * * \\ (23.26) \end{gathered}$		$\begin{gathered} -70.73 * * * \\ (25.00) \end{gathered}$	$\underset{(25.06)}{-71.06 * * *}$
\log (Experience)		$\begin{gathered} -1.19 \\ (20.25) \end{gathered}$	$\begin{gathered} -0.69 \\ (20.31) \end{gathered}$		$\begin{gathered} -0.17 \\ (17.20) \end{gathered}$	$\begin{gathered} -0.07 \\ (17.16) \end{gathered}$
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Manager FE	Yes	Yes	Yes	Yes	Yes	Yes
Style FE	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	No	No	No	Yes	Yes	Yes
Observations R^{2}	233,847 0.69	226,286 0.71	226,286 0.71	233,507 0.73	225,960 0.75	225,960 0.75
	0.69	0.71	0.71	0.73	0.75	0.75

Managers' mobility and value added

Preliminary evidence: panel regression that includes a post switch dummy

$$
\text { ValueAdded }_{m, t}=\beta \text { Switch }_{m, t}+\text { Controls }+\delta_{t}+\lambda_{m}+\eta_{\text {style }}+\theta_{f}+\epsilon_{m, t}
$$

	Value Added					
	(1)	(2)	(3)	(4)	(5)	(6)
Switch \times Post	$\begin{gathered} 2.112^{* * *} \\ (0.359) \end{gathered}$	$\begin{gathered} 1.312^{* *} \\ (0.490) \end{gathered}$		$\begin{gathered} 1.353^{* *} \\ (0.547) \end{gathered}$	$\begin{gathered} 1.068^{* *} \\ (0.500) \end{gathered}$	
SwitchPromotion \times Post			$\begin{gathered} 2.492^{* * * *} \\ (0.659) \end{gathered}$			$\begin{gathered} 1.489 * * \\ (0.645) \end{gathered}$
SwitchDemotion \times Post			$\begin{gathered} 0.464 \\ (0.485) \end{gathered}$			$\begin{gathered} 0.713 \\ (0.552) \end{gathered}$
$\log ($ TNA)		$\begin{gathered} -1.507 * * * \\ (0.246) \end{gathered}$	$\begin{gathered} -1.553 * * * \\ (0.245) \end{gathered}$		$\begin{gathered} -1.572^{* * *} \\ (0.288) \end{gathered}$	$\begin{gathered} -1.581^{* * *} \\ (0.285) \end{gathered}$
$\log (\mathrm{Nb}$. Fund)		$\begin{gathered} 1.046 \\ (0.663) \end{gathered}$	$\begin{gathered} 1.076 \\ (0.662) \end{gathered}$		$\begin{gathered} 1.923^{* *} \\ (0.776) \end{gathered}$	$\begin{gathered} 1.925^{* *} \\ (0.776) \end{gathered}$
Flow		$\begin{aligned} & -0.004 \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.004) \end{aligned}$		$\begin{array}{r} -0.006 \\ (0.004) \end{array}$	$\begin{array}{r} -0.006 \\ (0.004) \end{array}$
\log (Tenure)		$\begin{gathered} 0.230 \\ (0.249) \end{gathered}$	$\begin{gathered} 0.236 \\ (0.250) \end{gathered}$		$\begin{gathered} 0.109 \\ (0.263) \end{gathered}$	$\begin{gathered} 0.110 \\ (0.263) \end{gathered}$
\log (Experience)		$\begin{gathered} 0.087 \\ (0.575) \end{gathered}$	$\begin{gathered} 0.084 \\ (0.576) \end{gathered}$		$\begin{gathered} 0.177 \\ (0.636) \end{gathered}$	$\begin{gathered} 0.177 \\ (0.636) \end{gathered}$
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Manager FE	Yes	Yes	Yes	Yes	Yes	Yes
Style FE	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	No	No	No	Yes	Yes	Yes
Observations R^{2}	$\begin{gathered} 233,847 \\ 0.03 \end{gathered}$	$\begin{gathered} 226,286 \\ 0.03 \end{gathered}$	$\begin{gathered} 226,286 \\ 0.03 \end{gathered}$	$\begin{gathered} 233,507 \\ 0.04 \end{gathered}$	$\begin{gathered} 225,960 \\ 0.04 \end{gathered}$	$\begin{gathered} 225,960 \\ 0.04 \end{gathered}$

Non-Compete Clauses (NCC) enforcement changes

(+year) and (-year) denote states that strenghtened and weakened the enforceability of NCC (2000-2018) according to Ewens and Marx (2017)

Non-Competes in the U.S. labor force

Source: Starr, Bishara and Prescott (2018), using nationally representative survey data on 11,505 labor force participants in the US in 2014

Figure A1: Incidence of noncompetes by industry and occupation

Non-Compete Clause

The typical investment manager NCC documented online has a period of 12 -month and restricts the following activities:
" directly or indirectly performing asset management services, trading services or investment advisory services; or working for or having an interest in a company, partnership or other entity that competes with [the fund and its affiliates]".

The effect of NCC on managers' mobility

Diff-in-diff to test the effect of NCC enforcement changes on managers' mobility:

$$
100 \times\left(\frac{\# \text { Switches }}{\# \text { Managers }}\right)_{s, t}=\beta\left\{\text { Treated } \times \text { Post }_{s, t}+\text { Controls }_{t-1}+\delta_{t}+\theta_{s}+\epsilon_{s, t}\right.
$$

	$100 \times$ (\#Switches / \#Managers)					
	(1)	(2)	(3)	(4)	(5)	(6)
Treated \times Post	$\begin{gathered} -0.506 * \\ (0.252) \end{gathered}$	$\begin{gathered} -0.635^{*} \\ (0.343) \end{gathered}$		$\begin{array}{r} -0.175 * \\ (0.100) \end{array}$	$\begin{gathered} -0.216^{* *} \\ (0.093) \end{gathered}$	
Strengthened \times Post			$\begin{gathered} -0.343^{* *} \\ (0.129) \end{gathered}$			$\begin{gathered} -0.228^{* *} \\ (0.112) \end{gathered}$
Weakened \times Post			$\begin{gathered} 1.134 \\ (0.879) \end{gathered}$			$\begin{aligned} & 0.159^{*} \\ & (0.081) \end{aligned}$
\log (Nb. Managers)		$\begin{gathered} 0.441 \\ (0.292) \end{gathered}$	$\begin{gathered} 0.431 \\ (0.289) \end{gathered}$		$\begin{aligned} & 0.371^{*} \\ & (0.186) \end{aligned}$	$\begin{aligned} & 0.370^{*} \\ & (0.186) \end{aligned}$
\log (Nb. Firms)		$\begin{gathered} -0.117 \\ (0.334) \end{gathered}$	$\begin{array}{r} -0.126 \\ (0.340) \end{array}$		$\begin{aligned} & -0.045 \\ & (0.171) \end{aligned}$	$\begin{aligned} & -0.043 \\ & (0.172) \end{aligned}$
$\log ($ TNA)		$\begin{gathered} -0.068 \\ (0.094) \end{gathered}$	$\begin{array}{r} -0.059 \\ (0.104) \end{array}$		$\begin{gathered} -0.004 \\ (0.083) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.083) \end{aligned}$
If Nb . Managers ≥ 10	No	No	No	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	3,334	3,286	3,286	2,068	2,046	2,046
R^{2}	0.06	0.06	0.06	0.13	0.13	0.13

The effect of NCC on misallocation and value added

Diff-in-diff to test the effect of NCC enforcement changes on misallocation:
$\log (\text { Misallocation })_{s, t}=\beta\left\{\right.$ Treated \times Post $_{s, t}+$ Controls $_{t-1}+\delta_{t}+\theta_{s}+\epsilon_{s, t}$

	$\log (\sigma(M P K))$		$\log ($ MPK $90-10)$		$\log ($ MPK $75-25)$		\log (Misallocation)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Treated \times Post	$\begin{gathered} 0.108 * * \\ (0.053) \end{gathered}$		$\begin{gathered} 0.112^{* *} \\ (0.046) \end{gathered}$		$\begin{gathered} 0.150^{* * *} \\ (0.048) \end{gathered}$		$\begin{aligned} & 0.098^{*} \\ & (0.057) \end{aligned}$	
Strengthened \times Post		$\begin{gathered} 0.058 \\ (0.046) \end{gathered}$		$\begin{aligned} & 0.091^{*} \\ & (0.053) \end{aligned}$		$\begin{gathered} 0.108 * * \\ (0.045) \end{gathered}$		$\begin{gathered} 0.108 \\ (0.069) \end{gathered}$
Weakened \times Post		$\begin{gathered} -0.343 * * * \\ (0.041) \end{gathered}$		$\begin{gathered} -0.212^{* * *} \\ (0.039) \end{gathered}$		$\begin{gathered} -0.346 * * * \\ (0.029) \end{gathered}$		$\begin{gathered} -0.051 \\ (0.032) \end{gathered}$
\log (Nb. Managers)	$\begin{gathered} 0.206 * * \\ (0.084) \end{gathered}$	$\begin{gathered} 0.204 * * \\ (0.085) \end{gathered}$	$\begin{gathered} 0.142 \\ (0.099) \end{gathered}$	$\begin{gathered} 0.141 \\ (0.099) \end{gathered}$	$\begin{gathered} 0.118 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.116 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.318^{* * *} \\ (0.107) \end{gathered}$	$\begin{gathered} 0.319^{* * * *} \\ (0.107) \end{gathered}$
\log (Nb. Firms)	$\begin{gathered} -0.132 \\ (0.080) \end{gathered}$	$\begin{array}{r} -0.126 \\ (0.079) \end{array}$	$\begin{array}{r} -0.075 \\ (0.082) \end{array}$	$\begin{gathered} -0.072 \\ (0.081) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.063) \end{gathered}$	$\begin{aligned} & -0.017 \\ & (0.062) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (0.098) \end{aligned}$	$\begin{gathered} -0.058 \\ (0.099) \end{gathered}$
$\log ($ TNA)	$\begin{aligned} & -0.025 \\ & (0.029) \end{aligned}$	$\begin{gathered} -0.028 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.028 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.048) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.017 \\ & (0.028) \end{aligned}$	$\begin{gathered} 0.764 * * * \\ (0.061) \end{gathered}$	$\begin{gathered} 0.765 * * * \\ (0.061) \end{gathered}$
If Nb . Managers ≥ 10	Yes							
Time FE	Yes							
State FE	Yes							
Observations	2,046	2,046	2,046	2,046	2,046	2,046	2,046	2,046
R^{2}	0.60	0.60	0.51	0.51	0.41	0.42	0.98	0.98

[^0]: ${ }^{1} k_{m}^{*}$ is set to zero for managers who have a negative estimate of a_{m}.

