Vulnerable Asset Management? The Case of Mutual Funds

Christoph Fricke Deutsche Bundesbank Daniel Fricke

University College London London School of Economics, Systemic Risk Centre Saïd Business School, Oxford

Motivation: The asset management sector grows and becomes more concentrated

Motivation: U.S. equity sector reveals comparable pattern to global developments

Question 1: Investment funds' contribution to systemic risk

1 What we do:

- Macroprudential stress-test with (i) funding fragility and (ii) fire sales
- Application to the U.S. domestic equity mutual fund sector during 2003-14

2 What we find:

• Aggregated vulnerabilities are small compared to banks

Towards a macroprudential stress test for mutual funds

4-step stress test:

- 1. Initial shock on the value of funds' asset holdings, F_1
- 2. Investors withdraw money w.r.t. past fund returns with sensitivity γ^{L} (flow-performance relationship)
- 3. Asset liquidation decision of funds for liquidity generation and leverage targeting
- 4. Asset liquidations have price impact according to asset liquidty, L

Investment Fund

(1) Initial asset price shock

Liabilities Assets

(1)Fund share drop due to

(1)

(2)

2004 2006 2008 2010 2012 2014 Year (quarterly)

2004 2006 2008 2010 2012 2014 Year (quarterly)

Question 2: Fund characteristics associated to systemic risk

1 What we do:

- Fund characteristics determining systemic risks
- Discuss the role of different portfolio liquidty measures

2 What we find:

- Fund-specific vulnerabilities depend on their business models
- Liquidity transformation crucial for systemic risk contribution
- Dissent between micro- and macroprudential regulators how to evaluate fund specific risk

Findings: Determinants of Fund Sector Vulnerabilities (Price Impact Time-Varying and Asset-Specific)

	Panel A			Panel B	
Model-inherent measures	$log(IV_1)$	$log(S_1)$	Alternative measures	$log(IV_1)$	$log(S_1)$
Size measures			Size measures		
log(TNA(t-1))	-0.5832*	* 0.5898**	log(1+Age(t-1))	-0.9402*	* 0.9657**
	(0.0541)	(0.0548)		(0.0197)	(0.0160)
			Flows ^{6M} (t-1)	-0.6697*	* 0.4111*
				(0.2204)	(0.2000)
Diversification measures			Diversification measures		
log(MeanOverlap(t-1))	-0.3409*	* 0.1676**	log(HHI(t-1))	0.4674*	* -0.4995**
	(0.0606)	(0.0564)		(0.0210)	(0.0132)
Illiquidity measures			Illiquidity measures		
log(Illiq ^{Amihud} (t-1))	0.0772*	* 0.3245**	log(Illiq ^{Spread} (t-1))	1.0425*	* 0.6690**
	(0.0133)	(0.0143)		(0.0370)	(0.0444)
Fama-MacBeth	Yes	Yes	Fama-MacBeth	Yes	Yes
Mean R ²	0.561	0.536	Mean R ²	0.281	0.254
Obs.	72,872	72,872	Obs.	59,430	59,430
* p<0.05; ** p<0.01					

Vulnerabilites to fire-sale dynamics in the fund sector

Aggregated vulnerabilities: Aggregated effect of initial asset price shock on sector-wide fire-sales relative to initial equity.

$$\tilde{AV} = \frac{1_N'R_3}{E_0} = \frac{1_N'A_0MLM'\left(\left[\Gamma^E E_1 + \Gamma^D D_1\right]R_1 + A_0B\tilde{R}_2\right)}{E_0}.$$

Systemicness: Fund's individual contribution to system wide fire-sales.

$$S_{i} = \frac{1'_{N}A_{0}MLM'\delta_{i}\delta'_{i}\left(\left[\Gamma^{E}E_{1} + \Gamma^{D}D_{1}\right]R_{1} + A_{0}B\tilde{R}_{2}\right)}{E_{0}},$$

Indirect vulnerabilities: Fund i's vulnerability to other funds' asset liquidations.

$$V_{i} = \frac{\delta_{i}^{\prime}A_{0}MLM^{\prime}\left(\left[\Gamma^{E}E_{1} + \Gamma^{D}D_{1}\right]R_{1} + A_{0}BR_{2}\right)}{E_{i,i}}.$$
(3)

Interpretation of findings

. Implications for Policy Makers: Heterogeneous interpretation of stress test results according to policy objective (Micro- vs. Macroprudential)

	Regulator's objective			
	Microprudential	Macroprudential		
Stabilization of	individual funds	financial system		
Vulnerability indicator	IV	S		

Variable	Interpretation of findings			
Fund Size	\Downarrow	\uparrow		
Diversification level	\Downarrow	↑		
Portfolio illiquidity	↑	1		

Fund's liquidity transformation contributes to systemic risk

2. Implications for stress-test set-up:

- Include further fund types to achieve a system-wide stress-test
- Liquidity assumption essential for accurate vulnerability estimation

Distortion effect of homogeneous price impact assumption

Finding: Small aggregated vulnerabilities in the fund sector

- 1. Small vulnerabilities in the U.S. domestic equity fund sector
- 5% initial shock (*Step 1*) corresponds to a fire-sale of less than 1bp of funds' AuM (0.001bp)
- 2. Vulnerabilities covary with price impact measures
- 3. Results robust to several price impact measures: a) Price impact time-varying and assetspecific (*Scenario* 1) b) Homogeneous price impact of 4.77×10^{-6}
 - for all assets in all quarters (*Scenario 3*)

Homogeneous price impact (IV_3 / S_3) results in economic meaningful lower vulnerabilities of the least liquid funds (*Decile 10*), compared to vulnerabilities derived from time-varying price impact parameters

Least liquid funds (*Decile 10*) above solid line Most liquid funds (*Decile 1*) below solid line

