Optimal Macroprudential and Monetary Policy in a Currency Union

Dmitriy Sergeyev
Bocconi University

BAFFI CAREFIN Centre, Bocconi University June 8, 2017

Macroeconomic Stabilization Tools

Closed Economy

- Monetary policy (before the crisis)
- Macroprudential policy (after the crisis)

Macroeconomic Stabilization Tools

Closed Economy

- Monetary policy (before the crisis)
- Macroprudential policy (after the crisis)

Monetary Union

- Monetary policy cannot stabilize asymmetric shocks
- Macroprudential policy can be used to stabilize economy

TodAy

Key elements of the model

1. A model with nominal rigidities
2. A model with banks (Stein, 2012)
3. A model of monetary union

Main results

- Optimal regional macroprudential policy

1. 2 AD and 3 pecuniary externalities

- Optimal global (coordinated) macroprudential policy

2. Three international spillovers
3. Local PM overregulates if banks issues lots of safe debt
4. Local PM underregulates if the union is in the ZLB

Contribution to the Literature

Pecuniary externality in international models

- Jeanne-Korinek(2010), Bianchi(2011), Benigno et al.(2013)
- This paper: pecuniary externality in the financial sector

Macroprudential policy due to nominal rigidities and ZLB

- Farhi-Werning (2016), Korinek-Simsek (2016)
- This paper: macroprudential regulation of the financial sectors in a currency union

Financial regulation in monetary union

- Rubio (2014), Quint-Rabanal (2014)
- This paper: optimal policy

Model with Nominal Rigidities

Model with Nominal Rigidities

Households $\max _{\left\{c_{t}, n_{t}\right\}, D_{1}^{c}} u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}\right)-v\left(n_{1}\right)\right]$

$$
\begin{array}{ll}
\text { s.t. } & P_{0} c_{0}+\frac{D_{1}^{c}}{1+i_{0}} \leq W_{0} n_{0}+\Pi_{0} \\
& P_{1} c_{1} \leq D_{1}^{c}+W_{1} n_{1}+\Pi_{1}
\end{array}
$$

Firms produce $y_{t}=A_{t} n_{t}$

Model with Nominal Rigidities

Households $\max _{\left\{c_{t}, n_{t}\right\}, D_{1}^{c}} u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}\right)-v\left(n_{1}\right)\right]$

$$
\begin{array}{ll}
\text { s.t. }: & P_{0} c_{0}+\frac{D_{1}^{c}}{1+i_{0}} \leq W_{0} n_{0}+\Pi_{0} \\
& P_{1} c_{1} \leq D_{1}^{c}+W_{1} n_{1}+\Pi_{1}
\end{array}
$$

Firms produce $y_{t}=A_{t} n_{t}$
Solution

$$
u^{\prime}\left(y_{1}\right)=\frac{1}{A_{1}} v^{\prime}\left(\frac{y_{1}}{A_{1}}\right) \Rightarrow y_{1}^{*}=y_{1}\left(A_{1}\right)
$$

Model with Nominal Rigidities

Households $\max _{\left\{c,, n_{t}\right\}, D_{1}^{c}} u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}\right)-v\left(n_{1}\right)\right]$

$$
\begin{array}{ll}
\text { s.t.: } & P_{0} c_{0}+\frac{D_{1}^{c}}{1+i_{0}} \leq W_{0} n_{0}+\Pi_{0} \\
& P_{1} c_{1} \leq D_{1}^{c}+W_{1} n_{1}+\Pi_{1}
\end{array}
$$

Firms produce $y_{t}=A_{t} n_{t}$
Solution

$$
\begin{aligned}
u^{\prime}\left(y_{1}\right) & =\frac{1}{A_{1}} v^{\prime}\left(\frac{y_{1}}{A_{1}}\right) \Rightarrow y_{1}^{*}=y_{1}\left(A_{1}\right) \\
u^{\prime}\left(y_{0}\right) & =\beta \frac{1+i_{0}}{P_{1} / P_{0}} u^{\prime}\left(y_{1}^{*}\right) \Rightarrow y_{0}=y_{0}\left(\frac{1+i_{0}}{P_{1} / P_{0}}, y_{1}^{*}\right)
\end{aligned}
$$

Model with Nominal Rigidities

Households $\max _{\left\{c_{t}, n_{t}\right\}, D_{1}^{c}} u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}\right)-v\left(n_{1}\right)\right]$

$$
\begin{array}{ll}
\text { s.t.: } & P_{0} c_{0}+\frac{D_{1}^{c}}{1+i_{0}} \leq W_{0} n_{0}+\Pi_{0} \\
& P_{1} c_{1} \leq D_{1}^{c}+W_{1} n_{1}+\Pi_{1}
\end{array}
$$

Firms produce $y_{t}=A_{t} n_{t}$
Solution

$$
\begin{aligned}
u^{\prime}\left(y_{1}\right) & =\frac{1}{A_{1}} v^{\prime}\left(\frac{y_{1}}{A_{1}}\right) \Rightarrow y_{1}^{*}=y_{1}\left(A_{1}\right) \\
u^{\prime}\left(y_{0}\right) & =\beta \frac{1+i_{0}}{P_{1} / P_{0}} u^{\prime}\left(y_{1}^{*}\right) \Rightarrow y_{0}=y_{0}\left(\frac{1+i_{0}}{P_{1} / P_{0}}, y_{1}^{*}\right)
\end{aligned}
$$

Welfare

$$
u^{\prime}\left(y_{0}\right) \neq \frac{1}{A_{0}} v^{\prime}\left(\frac{y_{0}}{A_{0}}\right)
$$

Model with Nominal Rigidities

Households $\max _{\left\{c_{t}, n_{t}\right\}, D_{1}^{c}} u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}\right)-v\left(n_{1}\right)\right]$

$$
\begin{array}{ll}
\text { s.t.: } & P_{0} c_{0}+\frac{D_{1}^{c}}{1+i_{0}} \leq W_{0} n_{0}+\Pi_{0} \\
& P_{1} c_{1} \leq D_{1}^{c}+W_{1} n_{1}+\Pi_{1}
\end{array}
$$

Firms produce $y_{t}=A_{t} n_{t}$
Solution

$$
\begin{aligned}
u^{\prime}\left(y_{1}\right) & =\frac{1}{A_{1}} v^{\prime}\left(\frac{y_{1}}{A_{1}}\right) \Rightarrow y_{1}^{*}=y_{1}\left(A_{1}\right) \\
u^{\prime}\left(y_{0}\right) & =\beta \frac{1+i_{0}}{P_{1} / P_{0}} u^{\prime}\left(y_{1}^{*}\right) \Rightarrow y_{0}=y_{0}\left(\frac{1+i_{0}}{P_{1} / P_{0}}, y_{1}^{*}\right)
\end{aligned}
$$

Welfare

$$
u^{\prime}\left(y_{0}\right) \neq \frac{1}{A_{0}} v^{\prime}\left(\frac{y_{0}}{A_{0}}\right) \Rightarrow \tau_{0} \equiv 1-\frac{v^{\prime}\left(y_{0} / A_{0}\right) / A_{0}}{u^{\prime}\left(y_{0}\right)} \neq 0
$$

Model with Banks: Preferences

$$
\mathcal{U}=u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}+\underline{c}_{1}\right)-v\left(n_{1}\right)\right]
$$

- $c_{1}+\underline{c}_{1}-$ total consumption in period 1

Model with Banks: Preferences

$$
\begin{gathered}
\mathcal{U}=u\left(c_{0}\right)-v\left(n_{0}\right)+\beta\left[u\left(c_{1}+\underline{c}_{1}\right)-v\left(n_{1}\right)\right] \\
+\beta \nu u\left(\underline{c}_{1}\right)
\end{gathered}
$$

- $c_{1}+\underline{c}_{1}-$ total consumption in period 1
- \underline{c}_{1} - must be bought with safe securities $D_{1}^{c}: P_{1} \underline{c}_{1} \leq D_{1}^{c}$

Model with Banks: Preferences

$$
\begin{aligned}
\mathcal{U}=u\left(c_{0}\right)-v\left(n_{0}\right) & +\beta\left[u\left(c_{1}+\underline{c}_{1}\right)-v\left(n_{1}\right)\right] \\
& +\beta\left[\nu u\left(\underline{c}_{1}\right)+X_{1} g\left(h_{1}\right)\right]
\end{aligned}
$$

- $c_{1}+\underline{c}_{1}-$ total consumption in period 1
- \underline{c}_{1} - must be bought with safe securities $D_{1}^{c}: P_{1} \underline{c}_{1} \leq D_{1}^{c}$
- h_{1} - consumption of durable goods

Model with Banks: Preferences

$$
\begin{aligned}
\mathcal{U}=u\left(c_{0}\right)-v\left(n_{0}\right) & +\beta\left[u\left(c_{1}+\underline{c}_{1}\right)-v\left(n_{1}\right)\right] \\
& +\beta\left[\nu u\left(\underline{c}_{1}\right)+X_{1} g\left(h_{1}\right)\right]
\end{aligned}
$$

- $c_{1}+\underline{c}_{1}-$ total consumption in period 1
- \underline{c}_{1} - must be bought with safe securities $D_{1}^{c}: P_{1} \underline{c}_{1} \leq D_{1}^{c}$
- h_{1} - consumption of durable goods
- $X_{1}=\left\{\begin{array}{ll}1, & \text { with prob } \mu \\ \theta, & \text { with prob } 1-\mu\end{array}\right.$ - shock to preferences

Model with Banks: Financial Sector

Durable goods production

$$
h_{1}=G\left(k_{0}\right)
$$

Model with Banks: Financial Sector

Durable goods production

$$
h_{1}=G\left(k_{0}\right)
$$

Banks

$$
\begin{aligned}
\max _{k_{0}, D_{1}^{b}, B\left(s_{1}\right)} & \mathbb{E}\left\{Q\left(s_{1}\right)\left[\Gamma_{1}\left(s_{1}\right) G\left(k_{0}\right)-D_{1}^{b}-B\left(s_{1}\right)\right]\right\} \\
\text { s.t. } & D_{1}^{b} \leq \min _{s_{1}}\left\{\Gamma_{1}\left(s_{1}\right)\right\} G\left(k_{0}\right) \\
& P_{0} k_{0} \leq \frac{D_{1}^{b}}{1+i_{0}}+\mathbb{E}\left[B\left(s_{1}\right) Q\left(s_{1}\right)\right]
\end{aligned}
$$

Model with Banks: Financial Sector

Durable goods production

$$
h_{1}=G\left(k_{0}\right)
$$

Banks

$$
\begin{aligned}
\max _{k_{0}, D_{1}^{b}, B\left(s_{1}\right)} & \mathbb{E}\left[Q\left(s_{1}\right) \Gamma_{1}\left(s_{1}\right)\right] G\left(k_{0}\right)-P_{0} k_{0}+\frac{\tau_{A}}{1+\tau_{A}} \cdot \frac{D_{1}^{b}}{1+i_{0}} \\
\text { s.t. } & D_{1}^{b} \leq \min _{s_{1}}\left\{\Gamma_{1}\left(s_{1}\right)\right\} G\left(k_{0}\right)
\end{aligned}
$$

Model with Banks: Financial Sector

Durable goods production

$$
h_{1}=G\left(k_{0}\right)
$$

Banks
$\max _{k_{0}, D_{1}^{b}, B\left(s_{1}\right)} \mathbb{E}\left[Q\left(s_{1}\right) \Gamma_{1}\left(s_{1}\right)\right] G\left(k_{0}\right)-P_{0} k_{0}+\frac{\tau_{A}}{1+\tau_{A}} \cdot \frac{D_{1}^{b}}{1+i_{0}}$

$$
\text { s.t. } D_{1}^{b} \leq \min _{s_{1}}\left\{\Gamma_{1}\left(s_{1}\right)\right\} G\left(k_{0}\right)
$$

With non-pecuniary safety preferences: $\mathbb{E} Q\left(s_{1}\right) \neq 1 /\left(1+i_{0}\right)$

$$
\tau_{A} \equiv \frac{1 / \mathbb{E} Q\left(s_{1}\right)-\left(1+i_{0}\right)}{1+i_{0}}
$$

Model with Banks: Equilibrium

Equilibrium with flexible prices

$$
u^{\prime}\left(c_{0}\right)=v^{\prime}\left(y_{0} / A_{0}\right) / A_{0}, \quad u^{\prime}\left(y_{1}\right)=v^{\prime}\left(y_{1} / A_{1}\right) / A_{1}
$$

Model with Banks: Equilibrium

Equilibrium with flexible prices

$$
\begin{aligned}
& u^{\prime}\left(c_{0}\right)=v^{\prime}\left(y_{0} / A_{0}\right) / A_{0}, \quad u^{\prime}\left(y_{1}\right)=v^{\prime}\left(y_{1} / A_{1}\right) / A_{1} \\
& \beta \frac{u^{\prime}\left(y_{1}\right)}{u^{\prime}\left(c_{0}\right)}\left[(\mu+(1-\mu) \theta) \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)\right.
\end{aligned}
$$

Model with Banks: Equilibrium

Equilibrium with flexible prices

$$
\begin{gathered}
u^{\prime}\left(c_{0}\right)=v^{\prime}\left(y_{0} / A_{0}\right) / A_{0}, \quad u^{\prime}\left(y_{1}\right)=v^{\prime}\left(y_{1} / A_{1}\right) / A_{1} \\
\beta \frac{u^{\prime}\left(y_{1}\right)}{u^{\prime}\left(c_{0}\right)}\left[(\mu+(1-\mu) \theta) \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)+\tau_{A} \theta \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)\right]=1 \\
\tau_{A}=\frac{\nu u^{\prime}\left(d_{1}^{b}\right)}{u^{\prime}\left(y_{1}\right)}, d_{1}^{b}=\frac{\theta g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G\left(k_{0}\right)
\end{gathered}
$$

Model with Banks: Equilibrium

Equilibrium with flexible prices

$$
\begin{gathered}
u^{\prime}\left(c_{0}\right)=v^{\prime}\left(y_{0} / A_{0}\right) / A_{0}, \quad u^{\prime}\left(y_{1}\right)=v^{\prime}\left(y_{1} / A_{1}\right) / A_{1} \\
\beta \frac{u^{\prime}\left(y_{1}\right)}{u^{\prime}\left(c_{0}\right)}\left[(\mu+(1-\mu) \theta) \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)+\tau_{A} \theta \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)\right]=1 \\
\tau_{A}=\frac{\nu u^{\prime}\left(d_{1}^{b}\right)}{u^{\prime}\left(y_{1}\right)}, d_{1}^{b}=\frac{\theta g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G\left(k_{0}\right)
\end{gathered}
$$

First best

Model with Banks: Equilibrium

Equilibrium with flexible prices

$$
\begin{gathered}
u^{\prime}\left(c_{0}\right)=v^{\prime}\left(y_{0} / A_{0}\right) / A_{0}, \quad u^{\prime}\left(y_{1}\right)=v^{\prime}\left(y_{1} / A_{1}\right) / A_{1} \\
\beta \frac{u^{\prime}\left(y_{1}\right)}{u^{\prime}\left(c_{0}\right)}\left[(\mu+(1-\mu) \theta) \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)+\tau_{A} \theta \frac{g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G^{\prime}\left(k_{0}\right)\right]=1 \\
\tau_{A}=\frac{\nu u^{\prime}\left(d_{1}^{b}\right)}{u^{\prime}\left(y_{1}\right)}, d_{1}^{b}=\frac{\theta g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}\right)} G\left(k_{0}\right)
\end{gathered}
$$

First best

- $\tau_{A}=0$
- Policy: issue lots of government safe bonds
["Friedman rule" for safe assets]

Model with Banks: Second Best

Assumption: fiscal policy cannot achieve first best

Model with Banks: Second Best

Assumption: fiscal policy cannot achieve first best
Available tools: regulator varies the amount of private safe debt (Pigouvian taxes on safe debt issuance)

Model with Banks: Second Best

Assumption: fiscal policy cannot achieve first best
Available tools: regulator varies the amount of private safe debt (Pigouvian taxes on safe debt issuance)

Full Problem with RR

Private allocation isn't 2nd best efficient: pecuniary externality

$$
d_{1}^{b}=\frac{\theta g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}^{*}\right)} G\left(k_{0}\right)
$$

too much safe debt \Leftrightarrow too low durable price \Leftrightarrow too many durables

Model with Banks: Second Best

Assumption: fiscal policy cannot achieve first best
Available tools: regulator varies the amount of private safe debt (Pigouvian taxes on safe debt issuance)

Full Problem with RR
Private allocation isn't 2 nd best efficient: pecuniary externality

$$
d_{1}^{b}=\frac{\theta g^{\prime}\left[G\left(k_{0}\right)\right]}{u^{\prime}\left(y_{1}^{*}\right)} G\left(k_{0}\right)
$$

too much safe debt \Leftrightarrow too low durable price \Leftrightarrow too many durables Optimal macroprudential tax mitigates pecuniary externality

$$
\begin{aligned}
\tau_{0}^{b}= & \frac{\tau_{A}}{1+\tau_{A}} \epsilon_{\Gamma} \\
& {\left[\epsilon_{\Gamma}-\text { elasticity of durables demand }\right] }
\end{aligned}
$$

Model of Monetary Union: Assumptions

- Continuum of countries $i \in[0,1]$
- Goods
- $c_{N T, t}^{i}$: non-traded produced goods [sticky price in $t=0$]
- $c_{T, t}^{i}$: homogenous traded goods [endowment e_{0}^{i}, e_{1}^{i}]
- h_{1}^{i} : non-traded durable goods
- Cole-Obstfeld (log) utility
- No labor mobility
- International markets
- traded goods
- safe debt
- Government
- union-wide monetary authority
- regional financial regulators who rebate locally
- Safe-assets-in-advance constraint:

$$
P_{N T, 1}^{i} \underline{c}_{N T, 1}^{i}+P_{T, 1} \underline{c}_{T, 1}^{i} \leq D_{1}^{c, i}
$$

Optimal Regional Policy

Optimal Regional Policy

Objective: $\max \mathcal{U}^{i}$
Constraints

- all regional equilibrium conditions
- international prices $\left(P_{T, 0}, P_{T, 1}, i_{0}\right)$ are exogenous

Macroprudential tool

- country-specific tax on safe debt issuance $\tau_{0}^{b, i}$

Optimal Regional Policy

Objective: $\max \mathcal{U}^{i}$
Constraints

- all regional equilibrium conditions
- international prices $\left(P_{T, 0}, P_{T, 1}, i_{0}\right)$ are exogenous

Macroprudential tool

- country-specific tax on safe debt issuance $\tau_{0}^{b, i}$

Proposition 1.

$$
\begin{array}{r}
\tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+Z_{3}^{i} d_{1}^{b, i}-Z_{3}^{i} a d_{1}^{c, i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right) \\
Z_{2}^{i}, Z_{3}^{i}, Z_{4}^{i}>0
\end{array}
$$

Optimal Regional Policy

Intuition

$$
\tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+d_{1}^{b, i} Z_{3}^{i}-a d_{1}^{c, i} Z_{3}^{i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right)
$$

Optimal Regional Policy

Intuition

$$
\begin{aligned}
& \tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+d_{1}^{b, i} Z_{3}^{i}-a d_{1}^{c, i} Z_{3}^{i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right) \\
& \text { 2) } d_{1}^{b, i} \uparrow \Rightarrow k_{0}^{i} \uparrow \Rightarrow y_{N T, 0}^{i} \uparrow \\
& \text { (AD externality) }
\end{aligned}
$$

Optimal Regional Policy

Intuition

$$
\begin{aligned}
& \tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+d_{1}^{b, i} Z_{3}^{i}-a d_{1}^{c, i} Z_{3}^{i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right) \\
& \text { 2) } d_{1}^{b, i} \uparrow \Rightarrow k_{0}^{i} \uparrow \Rightarrow y_{N T, 0}^{i} \uparrow \quad \text { (AD externality) } \\
& \text { 3-4) } d_{1}^{b, i} \uparrow \Rightarrow c_{T, 1}^{i} \downarrow \Rightarrow P_{N T, 1}^{i} / P_{T, 1} \equiv p_{1}^{i} \downarrow
\end{aligned}
$$

Optimal Regional Policy

Intuition

$\tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+d_{1}^{b, i} Z_{3}^{i}-a d_{1}^{c, i} Z_{3}^{i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right)$
2) $d_{1}^{b, i} \uparrow \Rightarrow k_{0}^{i} \uparrow \Rightarrow y_{N T, 0}^{i} \uparrow$
(AD externality)
$3-4) d_{1}^{b, i} \uparrow \quad \Rightarrow \quad c_{T, 1}^{i} \downarrow \quad \Rightarrow \quad P_{N T, 1}^{i} / P_{T, 1} \equiv p_{1}^{i} \downarrow$

- collateral constraint gets tighter: $d_{1}^{b, i} \leq \theta^{i} \frac{g^{\prime}\left[G\left(k_{0}^{i}\right)\right]}{a / y_{N T, 1}^{i, *}} G\left(k_{0}^{i}\right) p_{1}^{i}$ (negative pecuniary externality)

Optimal Regional Policy

Intuition

$\tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+d_{1}^{b, i} Z_{3}^{i}-a d_{1}^{c, i} Z_{3}^{i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right)$
2) $d_{1}^{b, i} \uparrow \Rightarrow k_{0}^{i} \uparrow \Rightarrow y_{N T, 0}^{i} \uparrow$
(AD externality)
$3-4) d_{1}^{b, i} \uparrow \quad \Rightarrow \quad c_{T, 1}^{i} \downarrow \quad \Rightarrow \quad P_{N T, 1}^{i} / P_{T, 1} \equiv p_{1}^{i} \downarrow$

- collateral constraint gets tighter: $\quad d_{1}^{b, i} \leq \theta^{i} \frac{g^{\prime}\left[G\left(k_{0}^{i}\right)\right]}{a / y_{N T, 1}^{i, *}} G\left(k_{0}^{i}\right) p_{1}^{i}$ (negative pecuniary externality)
- SAIA constraint gets looser: $\quad \underline{c}_{T, 1}^{i}+\underline{c}_{N T, 1}^{i} p_{1}^{i} \leq d_{1}^{c, i}$
(positive pecuniary externality)

Optimal Regional Policy

Intuition

$\tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+d_{1}^{b, i} Z_{3}^{i}-a d_{1}^{c, i} Z_{3}^{i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right)$
2) $d_{1}^{b, i} \uparrow \Rightarrow k_{0}^{i} \uparrow \Rightarrow y_{N T, 0}^{i} \uparrow$
(AD externality)
3-4) $d_{1}^{b, i} \uparrow \Rightarrow c_{T, 1}^{i} \downarrow \Rightarrow P_{N T, 1}^{i} / P_{T, 1} \equiv p_{1}^{i} \downarrow$

- collateral constraint gets tighter: $\quad d_{1}^{b, i} \leq \theta^{i} \frac{g^{\prime}\left[G\left(k_{0}^{i}\right)\right]}{a / y_{N T, 1}^{i, *}} G\left(k_{0}^{i}\right) p_{1}^{i}$ (negative pecuniary externality)
- SAIA constraint gets looser: $\quad \underline{c}_{T, 1}^{i}+\underline{c}_{N T, 1}^{i} p_{1}^{i} \leq d_{1}^{c, i}$
(positive pecuniary externality)

5) $d_{1}^{b, i} \uparrow \Rightarrow c_{T, 0}^{i} \uparrow \Rightarrow c_{N T, 0}^{i} \uparrow$ because $P_{N T, 0}^{i} / P_{T, 0}-$ fixed
$\Rightarrow y_{N T, 0}^{i} \uparrow$
(AD externality)

Optimal Coordinated Policy

Objective: $\int \omega^{i} \mathcal{U}^{i} d i$
Constraints: all local equilibrium conditions and international market clearing
Tools: $\left\{\tau_{0}^{b, i}\right\}$ and i_{0}

Optimal Coordinated Policy

Objective: $\int \omega^{i} \mathcal{U}^{i} d i$
Constraints: all local equilibrium conditions and international market clearing
Tools: $\left\{\tau_{0}^{b, i}\right\}$ and i_{0}

Proposition 2.

- Monetary policy: $\int \omega^{i} \tau_{0}^{i} d i=0$

Optimal Coordinated Policy

Objective: $\int \omega^{i} \mathcal{U}^{i} d i$
Constraints: all local equilibrium conditions
and international market clearing
Tools: $\left\{\tau_{0}^{b, i}\right\}$ and i_{0}

Proposition 2.

- Monetary policy: $\int \omega^{i} \tau_{0}^{i} d i=0$
- Macroprudential policy

$$
\begin{gathered}
\tau_{0}^{b, i}=\frac{1}{1-\tau_{0}^{i}}\left(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1+\tau_{A}^{i}}-\tau_{0}^{i} Z_{2}^{i}+Z_{3}^{i} d_{1}^{b, i}-Z_{3}^{i} a d_{1}^{c, i}-\frac{a}{1-a} \tau_{0}^{i} Z_{4}^{i}\right. \\
\left.+Z_{5}^{i} \widetilde{\psi}_{0}\right), \quad Z_{5}^{i}>0
\end{gathered}
$$

International Spillovers

Intuition

International Spillovers

Intuition

1-2) $\tau_{0}^{b, i} \uparrow \Rightarrow d_{1}^{b, i} \downarrow \Rightarrow c_{T, 1}^{i} \uparrow \Rightarrow c_{T, 1}^{j} \downarrow \Rightarrow p_{1}^{j} \downarrow$

International Spillovers

Intuition

1-2) $\tau_{0}^{b, i} \uparrow \Rightarrow d_{1}^{b, i} \downarrow \Rightarrow c_{T, 1}^{i} \uparrow \Rightarrow c_{T, 1}^{j} \downarrow \Rightarrow p_{1}^{j} \downarrow$

- collateral constraint in country j gets tighter:

$$
d_{1}^{b, j} \leq \theta^{j} \frac{g^{\prime}\left[G\left(k_{0}^{j}\right)\right]}{a / y_{N T, 1}^{j, *}} G\left(k_{0}^{j}\right) p_{1}^{j} \text { (negative externality) }
$$

International Spillovers

Intuition

1-2) $\tau_{0}^{b, i} \uparrow \Rightarrow d_{1}^{b, i} \downarrow \Rightarrow c_{T, 1}^{i} \uparrow \Rightarrow c_{T, 1}^{j} \downarrow \Rightarrow p_{1}^{j} \downarrow$

- collateral constraint in country j gets tighter:

$$
d_{1}^{b, j} \leq \theta^{j} \frac{g^{\prime}\left[G\left(k_{0}^{j}\right)\right]}{a / y_{N T, 1}^{j, *}} G\left(k_{0}^{j}\right) p_{1}^{j} \text { (negative externality) }
$$

- SAIA constraint in country j gets looser:

$$
\underline{c}_{T, 1}^{j}+\underline{c}_{N T, 1}^{j} p_{1}^{j} \leq d_{1}^{c, j} \quad \text { (positive externality) }
$$

International Spillovers

Intuition

1-2) $\tau_{0}^{b, i} \uparrow \Rightarrow d_{1}^{b, i} \downarrow \Rightarrow c_{T, 1}^{i} \uparrow \Rightarrow c_{T, 1}^{j} \downarrow \Rightarrow p_{1}^{j} \downarrow$

- collateral constraint in country j gets tighter:

$$
d_{1}^{b, j} \leq \theta^{j} \frac{g^{\prime}\left[G\left(k_{0}^{j}\right)\right]}{a / y_{N T, 1}^{j, *}} G\left(k_{0}^{j}\right) p_{1}^{j} \text { (negative externality) }
$$

- SAIA constraint in country j gets looser:

$$
\underline{c}_{T, 1}^{j}+\underline{c}_{N T, 1}^{j} p_{1}^{j} \leq d_{1}^{c, j} \quad \text { (positive externality) }
$$

3) $\tau_{0}^{b, i} \uparrow \Rightarrow d_{1}^{b, i} \downarrow \Rightarrow c_{T, 0}^{i} \downarrow \Rightarrow c_{T, 0}^{j} \uparrow \Rightarrow c_{N T, 0}^{j} \uparrow$
because $P_{N T, 0}^{j} / P_{T, 0}-$ fixed $\Rightarrow y_{N T, 0}^{j} \uparrow$
(AD externality)

Optimal Coordinated Policy

Symmetric Countries

Proposition 3.
If $\tau_{0}=0$ and $d_{1}^{b}>a d_{1}^{c}$, then $\widetilde{\psi}_{0}<0$ (local regulator overregulates its financial sector).

- Draghi wants banks to issue even more safe debt when they already issue lots of safe debt

Optimal Coordinated Policy

Symmetric Countries

Proposition 3.
If $\tau_{0}=0$ and $d_{1}^{b}>a d_{1}^{c}$, then $\widetilde{\psi}_{0}<0$ (local regulator overregulates its financial sector).

- Draghi wants banks to issue even more safe debt when they already issue lots of safe debt

Proposition 4. If $\tau_{0}>\bar{\tau}_{0}>0$, then $\widetilde{\psi}_{0}>0$ (local regulators underregulate financial sectors).

- Draghi wants to impose tighter financial regulation due to the ZLB in the Eurozone

Conclusion

1. Optimal macroprudential and monetary policy in MU
2. Macroprudential policy

- takes into account 2 AD and 3 pecuniary externalities

3. Gains from policy coordination

- regional regulators overregulate when banks are large
- regional regulators underregulate in the ZLB

