Optimal Macroprudential and Monetary Policy in a Currency Union

Dmitriy Sergeyev Bocconi University

BAFFI CAREFIN Centre, Bocconi University June 8, 2017

MACROECONOMIC STABILIZATION TOOLS

Closed Economy

- ▶ Monetary policy (before the crisis)
- ▶ Macroprudential policy (after the crisis)

MACROECONOMIC STABILIZATION TOOLS

Closed Economy

- ▶ Monetary policy (before the crisis)
- ► Macroprudential policy (after the crisis)

Monetary Union

- ▶ Monetary policy <u>cannot</u> stabilize asymmetric shocks
- \blacktriangleright Macroprudential policy <u>can</u> be used to stabilize economy

TODAY

Key elements of the model

- 1. A model with nominal rigidities
- 2. A model with banks (Stein, 2012)
- 3. A model of monetary union

Main results

- Optimal regional macroprudential policy
 - 1. 2 AD and 3 pecuniary externalities
- ▶ Optimal global (coordinated) macroprudential policy
 - 2. Three international spillovers
 - 3. Local PM overregulates if banks issues lots of safe debt
 - 4. Local PM underregulates if the union is in the ZLB

Contribution to the Literature

Pecuniary externality in international models

- ▶ Jeanne-Korinek(2010), Bianchi(2011), Benigno et al.(2013)
- ▶ This paper: pecuniary externality in the financial sector

Macroprudential policy due to nominal rigidities and ZLB

- ► Farhi-Werning (2016), Korinek-Simsek (2016)
- ► **This paper**: macroprudential regulation of the financial sectors in a currency union

Financial regulation in monetary union

- \blacktriangleright Rubio (2014), Quint-Rabanal (2014)
- ▶ This paper: optimal policy

Households
$$\max_{\{c_t, n_t\}, D_1^c} u(c_0) - v(n_0) + \beta \left[u(c_1) - v(n_1) \right]$$
$$s.t.: P_0 c_0 + \frac{D_1^c}{1 + i_0} \le W_0 n_0 + \Pi_0$$
$$P_1 c_1 \le D_1^c + W_1 n_1 + \Pi_1$$

Firms produce $y_t = A_t n_t$

Households
$$\max_{\{c_t, n_t\}, D_1^c} u(c_0) - v(n_0) + \beta \left[u(c_1) - v(n_1) \right]$$
$$s.t.: P_0 c_0 + \frac{D_1^c}{1 + i_0} \le W_0 n_0 + \Pi_0$$
$$P_1 c_1 \le D_1^c + W_1 n_1 + \Pi_1$$

Firms produce $y_t = A_t n_t$

Solution

$$u'(y_1) = \frac{1}{A_1} v'\left(\frac{y_1}{A_1}\right) \quad \Rightarrow \quad y_1^* = y_1(A_1)$$

Households
$$\max_{\{c_t, n_t\}, D_1^c} u(c_0) - v(n_0) + \beta \left[u(c_1) - v(n_1) \right]$$
$$s.t.: P_0 c_0 + \frac{D_1^c}{1 + i_0} \le W_0 n_0 + \Pi_0$$
$$P_1 c_1 \le D_1^c + W_1 n_1 + \Pi_1$$

Firms produce $y_t = A_t n_t$

Solution

$$u'(y_1) = \frac{1}{A_1} v'\left(\frac{y_1}{A_1}\right) \Rightarrow y_1^* = y_1(A_1)$$
$$u'(y_0) = \beta \frac{1+i_0}{P_1/P_0} u'(y_1^*) \Rightarrow y_0 = y_0\left(\frac{1+i_0}{P_1/P_0}, y_1^*\right)$$

Households
$$\max_{\{c_t, n_t\}, D_1^c} u(c_0) - v(n_0) + \beta \left[u(c_1) - v(n_1) \right]$$
$$s.t.: P_0 c_0 + \frac{D_1^c}{1 + i_0} \le W_0 n_0 + \Pi_0$$
$$P_1 c_1 \le D_1^c + W_1 n_1 + \Pi_1$$

Firms produce $y_t = A_t n_t$

Solution

$$u'(y_1) = \frac{1}{A_1} v'\left(\frac{y_1}{A_1}\right) \Rightarrow y_1^* = y_1(A_1)$$
$$u'(y_0) = \beta \frac{1+i_0}{P_1/P_0} u'(y_1^*) \Rightarrow y_0 = y_0\left(\frac{1+i_0}{P_1/P_0}, y_1^*\right)$$

Welfare

$$u'(y_0) \neq \frac{1}{A_0}v'\left(\frac{y_0}{A_0}\right)$$

Households
$$\max_{\{c_t, n_t\}, D_1^c} u(c_0) - v(n_0) + \beta \left[u(c_1) - v(n_1) \right]$$
$$s.t.: P_0 c_0 + \frac{D_1^c}{1 + i_0} \le W_0 n_0 + \Pi_0$$
$$P_1 c_1 \le D_1^c + W_1 n_1 + \Pi_1$$

Firms produce $y_t = A_t n_t$

Solution

$$u'(y_1) = \frac{1}{A_1} v'\left(\frac{y_1}{A_1}\right) \Rightarrow y_1^* = y_1(A_1)$$
$$u'(y_0) = \beta \frac{1+i_0}{P_1/P_0} u'(y_1^*) \Rightarrow y_0 = y_0\left(\frac{1+i_0}{P_1/P_0}, y_1^*\right)$$

Welfare

$$u'(y_0) \neq \frac{1}{A_0} v'\left(\frac{y_0}{A_0}\right) \quad \Rightarrow \quad \tau_0 \equiv 1 - \frac{v'(y_0/A_0)/A_0}{u'(y_0)} \neq 0$$

$$\mathcal{U} = u(c_0) - v(n_0) + \beta \left[u(c_1 + \underline{c}_1) - v(n_1) \right]$$

▶ $c_1 + \underline{c}_1$ – total consumption in period 1

$$\mathcal{U} = u(c_0) - v(n_0) + \beta \left[u(c_1 + \underline{c}_1) - v(n_1) \right]$$
$$+ \beta \ \nu u(\underline{c}_1)$$

▶ $c_1 + \underline{c}_1$ – total consumption in period 1

▶ \underline{c}_1 – must be bought with safe securities D_1^c : $P_1\underline{c}_1 \leq D_1^c$

$$\mathcal{U} = u(c_0) - v(n_0) + \beta \left[u(c_1 + \underline{c}_1) - v(n_1) \right] \\ + \beta \left[\nu u(\underline{c}_1) + X_1 g(h_1) \right]$$

▶ $c_1 + \underline{c}_1$ – total consumption in period 1

- ▶ \underline{c}_1 must be bought with safe securities D_1^c : $P_1\underline{c}_1 \leq D_1^c$
- h_1 consumption of durable goods

$$\mathcal{U} = u(c_0) - v(n_0) + \beta \left[u(c_1 + \underline{c}_1) - v(n_1) \right] \\ + \beta \left[\nu u(\underline{c}_1) + X_1 g(h_1) \right]$$

▶ $c_1 + \underline{c}_1$ – total consumption in period 1

▶ \underline{c}_1 – must be bought with safe securities D_1^c : $P_1\underline{c}_1 \leq D_1^c$

• h_1 – consumption of durable goods

.

$$\bullet X_1 = \begin{cases} 1, & \text{with prob } \mu \\ \theta, & \text{with prob } 1 - \mu \end{cases} - \text{shock to preferences}$$

Durable goods production

 $h_1 = G(k_0)$

Durable goods production

$$h_1 = G(k_0)$$

Banks

$$\max_{k_0, D_1^b, B(s_1)} \mathbb{E} \left\{ Q(s_1) \left[\Gamma_1(s_1) G(k_0) - D_1^b - B(s_1) \right] \right\}$$

s.t. $D_1^b \le \min_{s_1} \{ \Gamma_1(s_1) \} G(k_0)$
 $P_0 k_0 \le \frac{D_1^b}{1+i_0} + \mathbb{E} \left[B(s_1) Q(s_1) \right]$

Durable goods production

 $h_1 = G(k_0)$

Banks

$$\max_{\substack{k_0, D_1^b, B(s_1)}} \mathbb{E}\left[Q(s_1)\Gamma_1(s_1)\right] G(k_0) - P_0 k_0 + \frac{\tau_A}{1 + \tau_A} \cdot \frac{D_0^t}{1 + i_0}$$

s.t. $D_1^b \le \min_{s_1} \{\Gamma_1(s_1)\} G(k_0)$

Dh

Durable goods production

 $h_1 = G(k_0)$

Banks

$$\max_{k_0, D_1^b, B(s_1)} \mathbb{E} \left[Q(s_1) \Gamma_1(s_1) \right] G(k_0) - P_0 k_0 + \frac{\tau_A}{1 + \tau_A} \cdot \frac{D_1^b}{1 + i_0}$$

s.t. $D_1^b \le \min_{s_1} \{ \Gamma_1(s_1) \} G(k_0)$

With non-pecuniary safety preferences: $\mathbb{E}Q(s_1) \neq 1/(1+i_0)$

$$\tau_A \equiv \frac{1/\mathbb{E}Q(s_1) - (1+i_0)}{1+i_0}$$

1

Equilibrium with flexible prices

$$u'(c_0) = v'(y_0/A_0)/A_0, \quad u'(y_1) = v'(y_1/A_1)/A_1$$

Equilibrium with flexible prices

$$u'(c_0) = v'(y_0/A_0) / A_0, \quad u'(y_1) = v'(y_1/A_1) / A_1$$

$$\beta \frac{u'(y_1)}{u'(c_0)} \left[(\mu + (1-\mu)\theta) \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) \right] = 1$$

Equilibrium with flexible prices

$$u'(c_0) = v'(y_0/A_0) / A_0, \quad u'(y_1) = v'(y_1/A_1) / A_1$$

$$\beta \frac{u'(y_1)}{u'(c_0)} \left[(\mu + (1-\mu)\theta) \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) + \tau_A \theta \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) \right] = 1$$

$$\tau_A = \frac{\nu u'(d_1^b)}{u'(y_1)}, \ d_1^b = \frac{\theta g'[G(k_0)]}{u'(y_1)} G(k_0)$$

Equilibrium with flexible prices

$$u'(c_0) = v'(y_0/A_0) / A_0, \quad u'(y_1) = v'(y_1/A_1) / A_1$$

$$\beta \frac{u'(y_1)}{u'(c_0)} \left[(\mu + (1-\mu)\theta) \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) + \tau_A \theta \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) \right] = 1$$

$$\tau_A = \frac{\nu u'(d_1^b)}{u'(y_1)}, \ d_1^b = \frac{\theta g'[G(k_0)]}{u'(y_1)} G(k_0)$$

First best

Equilibrium with flexible prices

$$u'(c_0) = v'(y_0/A_0) / A_0, \quad u'(y_1) = v'(y_1/A_1) / A_1$$

$$\beta \frac{u'(y_1)}{u'(c_0)} \left[(\mu + (1-\mu)\theta) \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) + \tau_A \theta \frac{g'[G(k_0)]}{u'(y_1)} G'(k_0) \right] = 1$$

$$\tau_A = \frac{\nu u'(d_1^b)}{u'(y_1)}, \ d_1^b = \frac{\theta g'[G(k_0)]}{u'(y_1)} G(k_0)$$

First best

 $\blacktriangleright \ \tau_A = 0$

 Policy: issue lots of government safe bonds ["Friedman rule" for safe assets]

Model with Banks: Second Best

Assumption: fiscal policy cannot achieve first best

MODEL WITH BANKS: SECOND BEST

Assumption: fiscal policy cannot achieve first best

Available tools: regulator varies the amount of private safe debt (Pigouvian taxes on safe debt issuance)

Full Problem with RR

MODEL WITH BANKS: SECOND BEST

Assumption: fiscal policy cannot achieve first best

Available tools: regulator varies the amount of private safe debt (Pigouvian taxes on safe debt issuance)

Full Problem with ${\rm RR}$

Private allocation isn't 2nd best efficient: pecuniary externality

$$d_1^b = \frac{\theta g'[G(k_0)]}{u'(y_1^*)} G(k_0)$$

too much safe debt \Leftrightarrow too low durable price \Leftrightarrow too many durables

MODEL WITH BANKS: SECOND BEST

Assumption: fiscal policy cannot achieve first best

Available tools: regulator varies the amount of private safe debt (Pigouvian taxes on safe debt issuance)

Full Problem with RR

Private allocation isn't 2nd best efficient: pecuniary externality

$$d_1^b = \frac{\theta g'[G(k_0)]}{u'(y_1^*)} G(k_0)$$

too much safe debt \Leftrightarrow too low durable price \Leftrightarrow too many durables Optimal macroprudential tax mitigates pecuniary externality

$$\tau_0^b = \frac{\tau_A}{1 + \tau_A} \epsilon_{\Gamma}$$

 $[\epsilon_{\Gamma}$ - elasticity of durables demand]

Model of Monetary Union: Assumptions

- Continuum of countries $i \in [0, 1]$
- ► Goods
 - ▶ $c_{NT,t}^i$: non-traded produced goods [sticky price in t = 0]
 - ▶ $c_{T,t}^i$: homogenous traded goods [endowment e_0^i, e_1^i]
 - h_1^i : non-traded durable goods
 - ▶ Cole-Obstfeld (log) utility
- ▶ No labor mobility
- International markets
 - traded goods
 - ▶ safe debt
- Government
 - union-wide monetary authority
 - ▶ regional financial regulators who rebate locally
- ► Safe-assets-in-advance constraint:

$$P_{NT,1}^{i}\underline{c}_{NT,1}^{i} + P_{T,1}\underline{c}_{T,1}^{i} \le D_{1}^{c,i}$$

Preferences

Optimal Regional Policy

Optimal Regional Policy

Objective: max \mathcal{U}^i Constraints

- ▶ all regional equilibrium conditions
- ▶ international prices $(P_{T,0}, P_{T,1}, i_0)$ are exogenous

Macroprudential tool

• country-specific tax on safe debt issuance $\tau_0^{b,i}$

Optimal Regional Policy

Objective: max \mathcal{U}^i Constraints

- ▶ all regional equilibrium conditions
- ▶ international prices $(P_{T,0}, P_{T,1}, i_0)$ are exogenous

Macroprudential tool

• country-specific tax on safe debt issuance $\tau_0^{b,i}$

Proposition 1.

$$\begin{split} \tau_0^{b,i} &= \frac{1}{1 - \tau_0^i} \bigg(\frac{\tau_A^i \epsilon_{\Gamma}^i}{1 + \tau_A^i} - \tau_0^i Z_2^i + Z_3^i d_1^{b,i} - Z_3^i a d_1^{c,i} - \frac{a}{1 - a} \tau_0^i Z_4^i \bigg) \\ & Z_2^i, Z_3^i, Z_4^i > 0 \end{split}$$

$\begin{array}{c} \text{Optimal Regional Policy} \\ \text{Intuition} \\ \tau_{0}^{b,i} = \frac{1}{1 - \tau_{0}^{i}} \bigg(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1 + \tau_{A}^{i}} - \tau_{0}^{i} Z_{2}^{i} + d_{1}^{b,i} Z_{3}^{i} - a d_{1}^{c,i} Z_{3}^{i} - \frac{a}{1 - a} \tau_{0}^{i} Z_{4}^{i} \bigg) \end{array}$

$\begin{array}{c} \text{Optimal Regional Policy} \\ \text{Intuition} \\ \tau_{0}^{b,i} = \frac{1}{1 - \tau_{0}^{i}} \bigg(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1 + \tau_{A}^{i}} - \tau_{0}^{i} Z_{2}^{i} + d_{1}^{b,i} Z_{3}^{i} - a d_{1}^{c,i} Z_{3}^{i} - \frac{a}{1 - a} \tau_{0}^{i} Z_{4}^{i} \bigg) \end{array}$

2)
$$d_1^{b,i} \uparrow \Rightarrow k_0^i \uparrow \Rightarrow y_{NT,0}^i \uparrow$$
 (AD externality)

$\begin{array}{l} \text{OPTIMAL REGIONAL POLICY} \\ \text{INTUITION} \\ \tau_0^{b,i} = \frac{1}{1 - \tau_0^i} \left(\frac{\tau_A^i \epsilon_{\Gamma}^i}{1 + \tau_A^i} - \tau_0^i Z_2^i + d_1^{b,i} Z_3^i - a d_1^{c,i} Z_3^i - \frac{a}{1 - a} \tau_0^i Z_4^i \right) \end{array}$

2)
$$d_1^{b,i} \uparrow \Rightarrow k_0^i \uparrow \Rightarrow y_{NT,0}^i \uparrow$$
 (AD externality)
3-4) $d_1^{b,i} \uparrow \Rightarrow c_{T,1}^i \downarrow \Rightarrow P_{NT,1}^i / P_{T,1} \equiv p_1^i \downarrow$

$\begin{array}{l} \text{Optimal Regional Policy} \\ \text{Intuition} \\ \tau_{0}^{b,i} = \frac{1}{1 - \tau_{0}^{i}} \bigg(\frac{\tau_{A}^{i} \epsilon_{\Gamma}^{i}}{1 + \tau_{A}^{i}} - \tau_{0}^{i} Z_{2}^{i} + d_{1}^{b,i} Z_{3}^{i} - a d_{1}^{c,i} Z_{3}^{i} - \frac{a}{1 - a} \tau_{0}^{i} Z_{4}^{i} \bigg) \end{array}$

2) $d_1^{b,i} \uparrow \Rightarrow k_0^i \uparrow \Rightarrow y_{NT,0}^i \uparrow$ (AD externality) 3-4) $d_1^{b,i} \uparrow \Rightarrow c_{T,1}^i \downarrow \Rightarrow P_{NT,1}^i / P_{T,1} \equiv p_1^i \downarrow$ - collateral constraint gets tighter: $d_1^{b,i} \leq \theta^i \frac{g'[G(k_0^i)]}{a/y_{NT,1}^{i,*}} G(k_0^i) p_1^i$ (negative pecuniary externality)

DPTIMAL REGIONAL POLICY INTUITION $bi = 1 \left(\tau_A^i \epsilon_{\Gamma}^i + i \sigma_i + b_i \sigma_i - c_i \sigma_i \right)$

$$\tau_0^{b,i} = \frac{1}{1 - \tau_0^i} \left(\frac{\tau_A \epsilon_{\Gamma}}{1 + \tau_A^i} - \tau_0^i Z_2^i + d_1^{b,i} Z_3^i - a d_1^{c,i} Z_3^i - \frac{a}{1 - a} \tau_0^i Z_4^i \right)$$

2) $d_1^{b,i} \uparrow \Rightarrow k_0^i \uparrow \Rightarrow y_{NT,0}^i \uparrow$ (AD externality) 3-4) $d_1^{b,i} \uparrow \Rightarrow c_{T,1}^i \downarrow \Rightarrow P_{NT,1}^i / P_{T,1} \equiv p_1^i \downarrow$

- collateral constraint gets tighter: $d_1^{b,i} \leq \theta^i \frac{g'[G(k_0^i)]}{a/y_{NT,1}^{i,*}} G(k_0^i) p_1^i$ (negative pecuniary externality)

- SAIA constraint gets looser: $\underline{c}_{T,1}^i + \underline{c}_{NT,1}^i p_1^i \le d_1^{c,i}$ (positive pecuniary externality)

\

OPTIMAL REGIONAL POLICY INTUITION 1 $(\tau_{i}^{i}\epsilon_{\Gamma}^{i})$ is the second second

$$\tau_0^{b,i} = \frac{1}{1 - \tau_0^i} \left(\frac{\tau_A \epsilon_\Gamma}{1 + \tau_A^i} - \tau_0^i Z_2^i + d_1^{b,i} Z_3^i - a d_1^{c,i} Z_3^i - \frac{a}{1 - a} \tau_0^i Z_4^i \right)$$

2) $d_1^{b,i} \uparrow \Rightarrow k_0^i \uparrow \Rightarrow y_{NT,0}^i \uparrow$ (AD externality) 3-4) $d_1^{b,i} \uparrow \Rightarrow c_{T,1}^i \downarrow \Rightarrow P_{NT,1}^i / P_{T,1} \equiv p_1^i \downarrow$

- collateral constraint gets tighter: $d_1^{b,i} \leq \theta^i \frac{g'[G(k_0^i)]}{a/y_{NT,1}^{i,*}} G(k_0^i) p_1^i$ (negative pecuniary externality)

- SAIA constraint gets looser: $\underline{c}_{T,1}^i + \underline{c}_{NT,1}^i p_1^i \leq d_1^{c,i}$ (positive pecuniary externality)

1

Optimal Coordinated Policy Objective: $\int \omega^i \mathcal{U}^i di$

Constraints: all local equilibrium conditions and international market clearing

Tools: $\{\tau_0^{b,i}\}$ and i_0

Optimal Coordinated Policy Objective: $\int \omega^i \mathcal{U}^i di$

Constraints: all local equilibrium conditions and international market clearing

Tools: $\{\tau_0^{b,i}\}$ and i_0

Proposition 2.

• Monetary policy: $\int \omega^i \tau_0^i di = 0$

Optimal Coordinated Policy Objective: $\int \omega^i \mathcal{U}^i di$

Constraints: all local equilibrium conditions and international market clearing

Tools: $\{\tau_0^{b,i}\}$ and i_0

Proposition 2.

- Monetary policy: $\int \omega^i \tau_0^i di = 0$
- Macroprudential policy

$$\begin{split} \tau_0^{b,i} &= \frac{1}{1 - \tau_0^i} \bigg(\frac{\tau_A^i \epsilon_{\Gamma}^i}{1 + \tau_A^i} - \tau_0^i Z_2^i + Z_3^i d_1^{b,i} - Z_3^i a d_1^{c,i} - \frac{a}{1 - a} \tau_0^i Z_4^i \\ &+ Z_5^i \widetilde{\psi}_0 \bigg), \quad Z_5^i > 0 \end{split}$$

INTERNATIONAL SPILLOVERS

INTUITION

$$1\text{-}2) \ \boxed{\tau_0^{b,i} \uparrow} \ \Rightarrow \ d_1^{b,i} \downarrow \ \Rightarrow \ c_{T,1}^i \uparrow \ \Rightarrow \ c_{T,1}^j \downarrow \ \Rightarrow \ \boxed{p_1^j} \downarrow$$

$$1-2) \begin{bmatrix} \tau_0^{b,i} \uparrow \\ 0 \end{bmatrix} \Rightarrow d_1^{b,i} \downarrow \Rightarrow c_{T,1}^i \uparrow \Rightarrow c_{T,1}^j \downarrow \Rightarrow \begin{bmatrix} p_1^j \downarrow \\ 0 \end{bmatrix}$$

- collateral constraint in country j gets tighter:

 $d_1^{b,j} \le \theta^j \frac{g'[G(k_0^j)]}{a/y_{NT,1}^{j,*}} G(k_0^j) p_1^j \text{ (negative externality)}$

$$1-2) \begin{bmatrix} \tau_0^{b,i} \uparrow \\ 0 \end{bmatrix} \Rightarrow d_1^{b,i} \downarrow \Rightarrow c_{T,1}^i \uparrow \Rightarrow c_{T,1}^j \downarrow \Rightarrow \begin{bmatrix} p_1^j \downarrow \\ 0 \end{bmatrix}$$

- collateral constraint in country j gets tighter:

 $d_1^{b,j} \le \theta^j \frac{g'[G(k_0^j)]}{a/y_{NT,1}^{j,*}} G(k_0^j) p_1^j \text{ (negative externality)}$

- SAIA constraint in country j gets looser: $\underline{c}_{T,1}^{j} + \underline{c}_{NT,1}^{j} p_{1}^{j} \leq d_{1}^{c,j}$ (positive externality)

$$1-2) \begin{bmatrix} \tau_0^{b,i} \uparrow \\ 0 \end{bmatrix} \Rightarrow d_1^{b,i} \downarrow \Rightarrow c_{T,1}^i \uparrow \Rightarrow c_{T,1}^j \downarrow \Rightarrow \begin{bmatrix} p_1^j \downarrow \\ 0 \end{bmatrix}$$

- collateral constraint in country j gets tighter: $d_1^{b,j} \leq \theta^j \frac{g'[G(k_0^j)]}{a/y_{NT,1}^{j,*}} G(k_0^j) p_1^j$ (negative externality)
- SAIA constraint in country j gets looser: $\underline{c}_{T,1}^{j} + \underline{c}_{NT,1}^{j} p_{1}^{j} \leq d_{1}^{c,j}$ (positive externality)

$$3) \begin{bmatrix} \tau_0^{b,i} \uparrow \end{bmatrix} \Rightarrow d_1^{b,i} \downarrow \Rightarrow c_{T,0}^i \downarrow \Rightarrow c_{T,0}^j \uparrow \Rightarrow c_{NT,0}^j \uparrow$$

because $P_{NT,0}^j / P_{T,0}$ -fixed $\Rightarrow \begin{bmatrix} y_{NT,0}^j \uparrow \end{bmatrix}$
(AD externality)

Optimal Coordinated Policy Symmetric Countries

Proposition 3.

If $\tau_0 = 0$ and $d_1^b > ad_1^c$, then $\tilde{\psi}_0 < 0$ (local regulator overregulates its financial sector).

 Draghi wants banks to issue even more safe debt when they already issue lots of safe debt

Optimal Coordinated Policy Symmetric Countries

Proposition 3.

If $\tau_0 = 0$ and $d_1^b > ad_1^c$, then $\tilde{\psi}_0 < 0$ (local regulator overregulates its financial sector).

 Draghi wants banks to issue even more safe debt when they already issue lots of safe debt

Proposition 4. If $\tau_0 > \overline{\tau}_0 > 0$, then $\widetilde{\psi}_0 > 0$ (local regulators underregulate financial sectors).

 Draghi wants to impose tighter financial regulation due to the ZLB in the Eurozone

CONCLUSION

- 1. Optimal macroprudential and monetary policy in MU
- 2. Macroprudential policy
 - ▶ takes into account 2 AD and 3 pecuniary externalities
- 3. Gains from policy coordination
 - ▶ regional regulators over regulate when banks are large
 - ▶ regional regulators underregulate in the ZLB