Monetary Policy Committees and Voting Behavior

Discussion by Alessandro Riboni

École Polytechnique, CREST

SUERF/BAFFI CAREFIN Conference, Milan 14th April 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This Paper

- Very nice paper. I learned a lot from it.
- Big Question: Can we infer preferences from voting behavior?
- Poole and Rosenthal (1985) develop a procedure that is very popular in political science, not in economics
- Utility of member i of voting in favor of policy j is the sum of deterministic and random component:

$$U_{j,t}^i = u_{j,t}^i + \epsilon_{j,t}^i$$

This Paper

- uⁱ_{j,t} is spatial component: the distance of policy j to ideal point of member i.
- $\epsilon_{j,t}^{i}$ is random component, "valence" of policy option j
- Define hawkish and dovish positions by *h* and *d*.
- Probabilistic voting:

 $Pr(i \text{ votes dovish}) = Pr(U_{d,t}^i > U_{h,t}^i) = Pr(u_{d,t}^i - u_{h,t}^i > \epsilon_{h,t}^i - \epsilon_{d,t}^i)$

Ideal points are jointly estimated by ML

Results

- Committee members are ranked according to their relative "hawkishness".
- Bank of England:
 - On average internals and external behave similarly, but externals are more likely to take extreme positions
- ► FOMC
 - Board members are more dovish than bank presidents

Comments

- What does "hawkishness" mean?
- Standard definition: "hawks" worry more about inflation while "doves" focus more on jobs.
- To assess this, one can estimate Taylor Rules

$$i_{i,t} = a_i + b_i E_t(\pi_{t+1}) + c_i E_t(x_{t+1} - x_{t+1}^*) + \epsilon_{i,t}$$

- Optimal *i_{i,t}* increases if inflation increases
- Optimal i_{i,t} decreases if unemployment increases
- This paper approach vs. reaction functions approach: pros and cons?
- The former is the only possible approach to study votes in Congress.
- But MPC data are more clean than roll-call data.

Estimating Reaction Functions

Riboni and Ruge-Murcia, 2008, IJCB

Table 1. Denchmark Results (12-Wohth Horizon)								
A. Reaction Function Coefficients								
	Interce	$_{\rm ept}$	Inflation		Unemplo	Unemployment		
Member	Estimate	s.e.	Estimate	s.e.	Estimate	s.e.	(p-value)	
George	-0.493	0.338	0.277	0.280	-0.983	0.667	0.451	
King	-1.132^{\dagger}	0.686	0.768	0.505	-2.334^{\dagger}	1.410	0.633	
Lomax	-0.233^{*}	0.063	0.199^{*}	0.059	-0.661^{*}	0.215	0.738	
Large	-0.294^{*}	0.117	0.305^{*}	0.137	-0.407	0.472	0.433	
Tucker	-0.151	0.099	0.049	0.066	-0.129	0.300	0.382	
Bean	-0.263	0.201	0.096	0.078	-0.607	0.553	0.150	
Barker	-0.442^{*}	0.213	0.182^{*}	0.092	-0.692	0.600	0.429	
Nickell	-0.627^{*}	0.260	0.225^{\dagger}	0.131	-1.124^{\dagger}	0.603	0.517	
Allsopp	-0.657^{*}	0.147	0.306^{*}	0.095	-0.641	0.436	0.477	
Bell	-0.424^{*}	0.132	0.138^{\dagger}	0.074	-0.840^{*}	0.281	0.567	
Lambert	-0.251*	0.083	0.179^{*}	0.060	-0.642^{*}	0.221	0.627	
Buiter	-1.114^{*}	0.389	0.996^{*}	0.357	-2.592^{*}	1.095	0.152	
Goodhart	-0.055	0.298	0.166	0.250	0.003	0.651	0.292	
Vickers	-0.971^{*}	0.236	1.088^{*}	0.319	-2.246^{*}	0.689	0.478	
Julius	-1.281*	0.335	1.278^{*}	0.403	-2.381^{*}	0.531	0.546	
Wadhwani	-0.262	0.236	0.036	0.129	-1.391^{*}	0.308	0.524	
Plenderleith	-1.394^{\dagger}	0.788	1.185	0.755	-2.113	1.368	0.932	
Clementi	-0.656^{\dagger}	0.368	0.448	0.308	-0.871	0.817	0.524	
Committee	-0.927	0.628	0.630	0.467	-1.808	1.308	0.576	

Table 1. Benchmark Results (12-Month Horizon)

	Eijffinger et al (2015)	R&R(2008)	R&R(2008)	R&R(2008)	
	Hawkishness Ranking	constant	Inflation	Unemployment	
Large	1	• • •	• • •	0	
Buiter	2	•		• • ••	
Vickers	3	••		• • ••	
King	4	•	000		
Goodhart	5	0 0 00	00	0	
Tucker	6	0 0 00	0	0	
Lambert	7	• • ••	••	••	
Lomax	8		••	••	
Clementi	9	••	000	000	
George	10	000	000	000	
Barker	11	• • •	••	00	
Plenderleith	12	•	0 0 00	000	
Bean	13	000	0	0	
Nickell	14	••	• • •	• • •	
Bell	15	• • •	•	••	
Allsopp	16	••	•••	00	
Julius	17	•	• • ••		
Wadhwani	18	000	0	• • •	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Comments

- 1 Are internals at the Bank of England more homogenous because they have similar preferences or because they share the same information?
- 2 What do committee members maximize? Do they want to make the right decision or maximize their reputation?
 - Reputation may lead to conformity (Scharfstein and Stein, 1990) or contrarian positions (Levy, 2004)

3 Unanimous votes are disregarded.

Comments

- This paper focuses on preference estimation.
- Mapping from preferences to outcomes is non trivial.
- Median Voter Theorem (MVT)?
- What happens when distribution of preferences becomes more disperse?
- MVT would imply that this has little consequence, but other models of aggregation of preferences would give a different answer.