Monetary policy options in a ‘low for long’ era

Richard Harrison Martin Seneca Matt Waldron

Bank of England

SUERF/Banca d’Italia workshop
19 November 2020

The views expressed in this presentation are those of the authors alone and do not necessarily represent the views of the Bank of England or any of its committees.
Motivation

Estimates of equilibrium real interest rates (R^*) from Del Negro et al. (2019)

Other things equal, persistently low R^* (‘low for long’) implies:

- More frequent encounters with the zero lower bound (ZLB)
- More difficult for monetary policy to return inflation to target
What we do

Model

- Simple New Keynesian model with portfolio frictions that give QE traction
- ‘Over-discounting’ (Gabaix, 2016; McKay et al., 2016) to mitigate forward guidance puzzle
- Estimated on UK and US data

Optimal policy

- Allow for QE to be used alongside policy rate
- Commitment and time-consistent policies
- Incorporate bounds on policy instruments

Macro-model simulation approach

- Simulate model of economy subject to a instrument bounds
- Examine distributions of outcome for key macro variables
- Study effects of assumptions for R^*, policy behaviour
- Piecewise-linear solution approach

Key results

- Pre-crisis monetary policy potentially inadequate in ‘low for long’ era
- Structural differences \Rightarrow different effects of low R^* for UK & US
- QE or forward guidance improves outcomes (with different effects on macro distributions)
The log-linearised model

\begin{align*}
\text{(1)} \quad \pi_t &= \beta_t E_t \pi_{t+1} + \eta \pi_{t-1} + \kappa x_t - \frac{\kappa \mu}{1 + \psi \sigma (1-\mu)} x_{t-1} + u_t \\
\text{(2)} \quad x_t &= \frac{1}{1 + \mu + \epsilon_\beta} E_t x_{t+1} + \frac{\mu}{1 + \mu + \epsilon_\beta} x_{t-1} - \frac{\sigma (1-\mu)}{1 + \mu + \epsilon_\beta} (r_t^e - E_t \pi_{t+1} - \hat{r}_t^*) \\
\text{(3)} \quad r_t^e &= \frac{1}{1 + \delta} r_t^s + \frac{\delta}{1 + \delta} E_t r_{t+1}^L \\
\text{(4)} \quad E_t r_{t+1}^L &= r_t^s - \nu q_t - \xi (\Delta q_t - \bar{\beta} E_t \Delta q_{t+1})
\end{align*}

Key model features

- **Rule of thumb firms** reduce forward-lookingness & increase inflation inertia
- **Endogenous discount factor** generates 'over-discounting' in IS equation
- **Portfolio frictions** imply that:
 - Effective interest rate depends on returns on short-term and long-term bonds
 - One period return on long-term bond depends on QE (q)

Model driven by cost-push shock (u_t) and shocks to equilibrium rate ($\hat{r}_t^* \equiv r_t^* - R^*$):

\begin{align*}
\hat{r}_t^* &= \rho_a \hat{r}_{t-1} + \sigma_a \epsilon_t^a, \\
\epsilon_t &= \rho_u \epsilon_{t-1} + \sigma_u (\epsilon_t^u - \rho \epsilon_{t-1}^u)
\end{align*}
Monetary policy

The baseline: ‘pre-crisis consensus’

Policy minimizes loss function

\[\mathcal{L}_t = \mathbb{E}_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left\{ (4\pi_{\tau})^2 + \lambda_x x_{\tau}^2 + \lambda_{\Delta r} (4\Delta r^s_{\tau})^2 \right\} \]

subject to: \(r^s_t \geq zlb \)

Assumptions

- Inflation target fixed at 2% per annum; examine performance of strategies as \(R^* \) varies
- Lower bound on policy rate is zero: in log deviations, \(zlb = - (\pi^* + R^*) \)
- Loss function parameters reflect ‘balanced’ specification (Yellen, 2012; Carney, 2017)
Macroeconomic consequences of ‘low for long’
United States: distributions under ‘pre-crisis consensus’

- When \(R^* = 3 \), distributions broadly symmetric
Macroeconomic consequences of ‘low for long’
United States: distributions under ‘pre-crisis consensus’

- But skews emerge as R^* falls
Macroeconomic consequences of ‘low for long’

Lower R* generates larger average shortfalls in output and inflation
Encounters with the zero bound become more frequent
Even so, ZLB incidence is relatively low
 ▶ Optimal policy (with interest rate smoothing objective)
 ▶ Sensitivity analysis

UK model exhibits higher variability and less sluggish dynamics
 ▶ Parameter comparison
Policy responses to ‘low for long’

Alternative strategies

Generalized loss function

\[
\mathcal{L}_t = \mathbb{E}_t \sum_{\tau=t}^{\infty} \beta^{\tau-t}\left\{ \left(4\pi_{\tau}\right)^2 + \lambda_x x_{\tau}^2 + \lambda_{\Delta q} (\Delta q_{\tau})^2 + \lambda_q q_{\tau}^2 + \lambda_{\Delta r} (4\Delta r_{\tau}^s)^2 \right\}
\]

subject to instrument constraints: \(r_t^s \geq zlb; 0 \leq q_t \leq \bar{q} \)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Instruments</th>
<th>Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Pre-crisis consensus’</td>
<td>Short rate ((r^s))</td>
<td>No</td>
</tr>
<tr>
<td>‘Post-crisis revealed preference’</td>
<td>Short rate ((r^s)) & QE ((q))</td>
<td>No</td>
</tr>
<tr>
<td>‘Woodfordian forward guidance’</td>
<td>Short rate ((r^s))</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Additional assumptions (based on Harrison, 2017)
 - Upper bound on QE is \(\bar{q} = 0.5 \)
 - QE loss function parameters proportional to welfare costs of portfolio frictions
Policy responses to ‘low for long’ ($R^* = 0$)
<table>
<thead>
<tr>
<th></th>
<th>Output gap</th>
<th>Inflation</th>
<th>Policy rate</th>
<th>ZLB</th>
<th>QE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean StD</td>
<td>Mean StD</td>
<td>Mean StD</td>
<td>Frq Dur 90pct Frq UB</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre crisis</td>
<td>-0.55 1.83</td>
<td>1.30 2.85</td>
<td>3.12 3.13</td>
<td>0.16 4 13 - -</td>
<td></td>
</tr>
<tr>
<td>Post crisis</td>
<td>-0.29 1.55</td>
<td>1.61 2.55</td>
<td>3.63 3.43</td>
<td>0.13 4 13 0.72 0.03</td>
<td></td>
</tr>
<tr>
<td>Guidance</td>
<td>-0.13 2.13</td>
<td>2.26 1.82</td>
<td>2.82 3.51</td>
<td>0.37 10 36 - -</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre crisis</td>
<td>-0.20 2.07</td>
<td>1.68 1.82</td>
<td>2.58 2.52</td>
<td>0.15 5 17 - -</td>
<td></td>
</tr>
<tr>
<td>Post crisis</td>
<td>-0.16 2.01</td>
<td>1.72 1.79</td>
<td>2.63 2.53</td>
<td>0.14 5 16 0.66 0.00</td>
<td></td>
</tr>
<tr>
<td>Guidance</td>
<td>-0.15 2.06</td>
<td>2.00 1.56</td>
<td>2.69 3.21</td>
<td>0.33 11 34 - -</td>
<td></td>
</tr>
</tbody>
</table>

‘Frq’ = frequency ; ‘Dur’ = median duration (quarters) ; ‘90pct’ = 90th percentile of duration (quarters) ; ‘UB’ = frequency of \(q = \bar{q} \)

UK results
- QE mainly used when short-rate constrained by ZLB: mainly affects the left tail
- Guidance skews distributions to the right

US results qualitatively similar: less pronounced given lower costs of ZLB
Effects of ‘low for long’ and policy implications differ for UK & US
- Low R^* seems less damaging (under baseline policy) in US
- QE and guidance have more effect in UK

These results likely reflect structural differences
- US has stickier & more inertial price-setting, higher habit formation
- UK has more persistent and volatile cost-push shocks

Next steps
- Explore fully stochastic solution
- Implications for financial stability & macro-prudential policy
References I

Estimates and forecasts of real equilibrium interest rate
 - King and Low (2014), Rachel and Smith (2017), Holston et al. (2017),
 Del Negro et al. (2019)

Macroeconomic models to study effects of impairment

Discussion of remedies
Variations on a theme

CMS = Coenen, Montes-Galdón & Smets (2019); BKR = Bernanke, Kiley & Roberts (2018); MW = Mertens & Williams (2019)
Household utility

- Household \(h \in (0, 1) \) maximises

\[
\mathbb{E}_t \sum_{\tau=t}^{\infty} D_{t,\tau} \left\{ \left(1 - \frac{1}{\sigma} \right)^{-1} \left[(C_{h,\tau} - \mu C_{\tau-1})^{1-1/\sigma} - 1 \right] - \frac{\omega_L L_{h,\tau}^{1+\psi}}{1 + \psi} \right\}
\]

- The discount factor is

\[
D_{t,\tau+1} = \bar{\beta} \left(\frac{C_{\tau}}{C} \right)^{\frac{\epsilon_\beta}{\sigma}} A_\tau D_{t,\tau}
\]

where \(a_t \equiv \ln A_t - \ln A \) evolves according to

\[
a_t = \rho_a a_{t-1} + \sigma_a \epsilon_t^a
\]
- Long-term bond issued at time t with nominal value V_t pays nominal coupons $1, \chi, \chi^2, \ldots$
- The value of a bond issued at date $t - j$ is $\chi^j V_t$
- The real value of long bond holdings is $B_{h,t} = \frac{V_t B^L_{h,t}}{P_t}$
- The one-period nominal return on the long-bond holding is $R^L_t \equiv \frac{1 + \chi V_t}{V_{t-1}}$
Household budget constraint is

\[C_{h,t} + B_{h,t} + B_{h,t}^L = \frac{R_{t-1}^s}{\Pi_t} B_{h,t-1} + \frac{R_t^L}{\Pi_t} B_{h,t-1}^L + W_t L_{h,t} + \Phi_t - \Psi_{h,t} \]

The portfolio adjustment costs are given by

\[\Psi_{h,t} = \tilde{\nu} \left[\delta \frac{B_{h,t}}{B_{h,t}^L} - 1 \right]^2 + \tilde{\xi} \left[\frac{B_{h,t}}{B_{h,t-1}} \frac{B_{h,t-1}^L}{B_{h,t}^L} - 1 \right]^2 \]

Results in pricing equation for the one-period return

\[\mathbb{E}_t r_{t+1}^L = r_t^s - \nu (b_t - b_t^L) - \xi (\Delta b_t - \Delta b_t^L) + \bar{\beta} \xi \delta \mathbb{E}_t (\Delta b_{t+1} - \Delta b_{t+1}^L) \]
Government's debt issuance policy is given by:

\[B_t^g = \bar{B} > 0, \quad B_t^{L,g} = \delta \bar{B} \]

Net purchases of long-term bonds by the central bank are

\[N_t = Q_t - \frac{Q_{t-1}}{R_t^L} \]

The QE policy instrument is the fraction long-term debt purchased

\[q_t = \frac{Q_t}{B_t^{L,g}} \]
Four step procedure

1. Calibrated parameters
 ▶ Typical ‘steady state’ parameters
 ▶ ‘Over-discounting’ parameters: set with reference to Gabaix (2016)

2. Bayesian estimation of key structural parameters
 ▶ UK and US data for output gap, inflation and policy rate
 ▶ Samples from 1954Q2 (US) and 1955Q2 (UK) to 2007Q4
 ▶ Monetary policy follows Taylor rule (Smets and Wouters, 2007)
 ▶ Priors from Smets and Wouters (2007)

3. Minimum distance estimation of ‘QE’ parameters
 ▶ Match long-term interest rate response to QE shock
 ▶ Use SVAR estimates from Weale and Wieladek (2016)

4. Loss function parameters
 ▶ Use ‘balanced’ specification (??)
 ▶ QE weights based on welfare-based loss function from Harrison (2017)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>United Kingdom</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Calibrated parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-state discount factor</td>
<td>$\bar{\beta}$</td>
<td>0.9925</td>
</tr>
<tr>
<td>Overdiscounting</td>
<td>ϵ_β</td>
<td>0.175</td>
</tr>
<tr>
<td>Fraction of RoT price setters</td>
<td>ω</td>
<td>0.2</td>
</tr>
<tr>
<td>Relative long term debt</td>
<td>δ</td>
<td>1</td>
</tr>
<tr>
<td>Long bond coupon decay</td>
<td>χ</td>
<td>0.98</td>
</tr>
<tr>
<td>2. Estimated parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habit formation</td>
<td>μ</td>
<td>0.52</td>
</tr>
<tr>
<td>Interest elasticity of demand</td>
<td>σ</td>
<td>0.69</td>
</tr>
<tr>
<td>Inverse Frisch elasticity</td>
<td>ψ</td>
<td>0.83</td>
</tr>
<tr>
<td>Calvo price rigidity parameter</td>
<td>θ</td>
<td>0.80</td>
</tr>
<tr>
<td>Price indexation parameter</td>
<td>ι</td>
<td>0.32</td>
</tr>
<tr>
<td>Persistence of demand process</td>
<td>ρ_a</td>
<td>0.66</td>
</tr>
<tr>
<td>Persistence of cost push shock</td>
<td>ρ_u</td>
<td>0.86</td>
</tr>
<tr>
<td>MA coefficient of cost push shock</td>
<td>$\rho_{e}u$</td>
<td>0.48</td>
</tr>
<tr>
<td>Standard deviation of demand shock</td>
<td>σ_a</td>
<td>1.84</td>
</tr>
<tr>
<td>Standard deviation of cost push shock</td>
<td>σ_u</td>
<td>0.12</td>
</tr>
<tr>
<td>3. QE parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portfolio share adjustment cost</td>
<td>ν</td>
<td>3.28</td>
</tr>
<tr>
<td>Portfolio change adjustment cost</td>
<td>ξ</td>
<td>14.98</td>
</tr>
<tr>
<td>4. Policy preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight on output gap</td>
<td>λ_x</td>
<td>0.25</td>
</tr>
<tr>
<td>Weight on interest rate changes</td>
<td>$\lambda_{\Delta r}$</td>
<td>1.00</td>
</tr>
<tr>
<td>Weight on QE change</td>
<td>$\lambda_{\Delta q}$</td>
<td>7.49</td>
</tr>
<tr>
<td>Weight on QE stock</td>
<td>λ_q</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Brendon et al. (2010) solution method
- Designed to handle multiple state variables
- Time-consistent Markov-perfect Stackelberg-Nash equilibrium
- Perfect foresight

Algorithm iterates over binding constraints indicators
- Solve for terminal steady state with non-binding constraints
- Guess constraints path in a transition from current to terminal state
- Solve backwards to obtain time-varying policy rules
- Check constraints and non-negativity of Lagrange multipliers

Simulation
- Draw shocks paths with $N + k$ periods
- Calculate transitions to the terminal state for each period
- Save current values for each period and burn the first k
Stochastic simulations under commitment

 - Capable of handling multiple state variables
 - Time-inconsistent policy plan
 - Perfect foresight

- Algorithm
 - Solve for unconstrained optimal policy under commitment
 - Introduce anticipated ‘shadow price shocks’ to satisfy constraints

- Simulation
 - Draw shocks paths with $N + k$ periods
 - Project with optimisation in first period
Sensitivity/robustness analysis

Interest rate smoothing in loss function, $\lambda_{\Delta r}$ (UK, $R^* = 0$)

- Other studies have found higher ZLB incidence, though typically assume simple rules
 - Kiley and Roberts (2017) 38% (33%) using FRB/US (DSGE) for $R^* = 1$

- Interest rate smoothing in loss function
 - Reduces ZLB incidence
 - Mimics ability to commit (Woodford, 2003)
 - Can help stabilize economy near ZLB (Nakata and Schmidt, 2019)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>United Kingdom</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habit formation</td>
<td>μ</td>
<td>0.52</td>
</tr>
<tr>
<td>Calvo price rigidity parameter</td>
<td>θ</td>
<td>0.80</td>
</tr>
<tr>
<td>Price indexation parameter</td>
<td>ι</td>
<td>0.32</td>
</tr>
<tr>
<td>Persistence of demand process</td>
<td>ρₐ</td>
<td>0.66</td>
</tr>
<tr>
<td>Persistence of cost push shock</td>
<td>ρᵤ</td>
<td>0.86</td>
</tr>
<tr>
<td>MA coefficient of cost push shock</td>
<td>ρₑᵤ</td>
<td>0.48</td>
</tr>
<tr>
<td>Standard deviation of demand shock</td>
<td>σₐ</td>
<td>1.84</td>
</tr>
<tr>
<td>Standard deviation of cost push shock</td>
<td>σᵤ</td>
<td>0.12</td>
</tr>
</tbody>
</table>

- Habits, price stickiness and indexation higher in US
- Cost-push shocks more variable and persistent in UK