GLOBAL SUPPLY CHAIN PRESSURES, INTERNATIONAL TRADE, AND INFLATION

Online Workshop “Challenges and recent advances in modelling and forecasting inflation”

Julian di Giovanni
Federal Reserve Bank of New York

Şebnem Kalemli-Özcan
University of Maryland

Alvaro Silva
University of Maryland

Muhammed A. Yıldırım
The Growth Lab at Harvard University

November 28, 2022

Disclaimer: The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of New York or any other person affiliated with the Federal Reserve System.
Inflation in the age of Covid-19

• Since early 2020 large swings in economic activity characterized by:
 ▶ Collapse and rebound in domestic demand, GDP, and international trade
 ▶ Consumption substitution across sectors (goods for services and back)
 ▶ Labor shortages across sectors/countries (pandemic/lockdowns and recovery)

• Result: **highest inflation of last four decades!**

• **Key question:** Can monetary policy be effective in bringing down inflation?

To answer, we need to quantify:

1. Drivers of the current inflation
2. International dimension
Quantification of Inflation Drivers based on a Structural Model

• **Approach:** Try to mimic real-life 2021 events as much as we can

 ▶ Co-existence of slack and inflation
 ▶ Output lower than potential ⇒ cannot be all demand shocks
 ▶ Timing and sectoral heterogeneity: Goods vs services inflation, sectoral inflation becoming broad based

Important to focus on:

▶ Covid is a set of disaggregated demand and supply shocks with asymmetric recovery before Russia-Ukraine war—2019q4-2021q4

▶ Linking sectoral imbalances and labor shortages—demand (slack) and supply (tight) constrained sectors

▶ Global and local supply chain disruptions—sectoral shifts in consumption demand connected with sectoral production using intermediate inputs and labor
Simultaneous Slack and Inflation

(a) Euro Area

(b) United States

Source: FRED
Larger declines in consumption, faster recovery in durables

(a) Euro Area: Decomposition

(b) United States: Decomposition

Notes: Seasonally-adjusted real private consumption. Source: OECD Quarterly National Accounts.
Inflation in goods picked up earlier than inflation in services

(a) Headline

(b) Core

(c) Services

(d) Goods

Year on Year Change

Source: FRED.

Global Supply Chain, Trade, and Inflation
di Giovanni, Kalemli-Ozcan, Silva, and Yildirim
Production Network is Global

(a) 65 Countries

(b) 45 Industries
Model
Inflation in a Network-Macro Model

• Based on Baqee and Farhi (2022, AER) (w/simplifications)
 ▶ Two period closed economy model
 ▶ Ricardian households with perfect foresight
 ▶ Multiple sectors that produce using factors and intermediate inputs
 ▶ Perfect competition in factors and good markets
 ▶ Downward nominal wage rigidity, Zero-lower bound.

• Model allows for rich set of shocks ⇒ Can run counterfactuals.
 ▶ Aggregate demand
 ▶ Sectoral demand
 ▶ Sectoral factor supply
Quantification
1. Sectoral Demand Shocks: Observed expenditure shares changes.
 - US Data: BEA sectoral personal consumption expenditure
 - Euro Area Data: Three sectors data from OECD Quarterly National Accounts

2. Sectoral Potential Supply Shocks: Observed changes in total hours worked.
 - US Data: BLS tables.
3. Aggregate Demand Shocks: Backed out from

\[
\text{Observed CPI Inflation } + \text{ Sectoral hours worked changes}
\]

- US Network Data: FRED, 2015 BEA IO Tables, BLS.
Demand and Supply Drivers of Inflation

(a) US: 66 Sectors, Obs. Inflation: 8.47

(b) EA: 45 Sectors, Obs. Inflation: 4.69

Role of Complementarities

Global Supply Chain, Trade, and Inflation

di Giovanni, Kalemli-Ozcan, Silva, and Yildirim
Open Economy
Decomposing Inflation in a Multi-Country Model

- We follow Çakmaklı, Demiralp, Kalemli-Özcan, Yeşiltaş, Yıldırım (2021).
- Model is same as the closed economy +
 - Foreign intermediate/consumption goods
 - Trade balance at the country-level.
 - Three countries: Euro Area, United States, and the Rest of the World

![Graph showing inflation with categories: Shocks Everywhere, EA Shocks Only, Outside EA Shocks Only, with values 5.34, 1.99, and 3.26 respectively.]
Conclusion

- Global health shock + limited substitutability across inputs \Rightarrow supply chain bottlenecks \Rightarrow rise in prices

- **Supply shocks are important!**
 - Supply shocks account for 1/2 of observed EA inflation, 1/3 of observed US inflation
 - Foreign shocks account for 2/3 of the Euro Area inflation

- **Demand stimulus in a supply constrained world has larger inflationary effects**
 - Monetary policy can tame inflation by contracting aggregate demand, however, there will remain an upward pressure on price growth with sectoral supply shocks and bottlenecks

- A network model with asymmetric sectoral supply and demand shocks \Rightarrow sectoral cost-push shocks \Rightarrow inflation
Thank you!

muhammed_yildirim@hks.harvard.edu

growthlab.cid.harvard.edu