The Use and Effectiveness of Macroprudential Policies: New Evidence

By Eugenio Cerutti (IMF), Stijn Claessens (BIS) and Luc Laeven (ECB)

New Challenges in Central Banking: Monetary Policy Governance and Macroprudential Issues

SUERF / BAFFI CAREFIN Centre Conference
Milan, June 8th 2017

Disclaimer! The views presented here are those of the authors and do NOT necessarily reflect the views of the IMF or BIS or ECB.
Introduction/Overview

• With the recent crisis macro-prudential policies (MAPs) have received greater attention

• But knowledge on MAPs remains still limited
 – Limited experiences (many MAPs introduced after GFC).
 – Incomplete data on the use of prudential tools
Structure of presentation

- Quick Review
 - Why are MAPs needed?
 - How effective have MAPs been?
 - Focus on reducing procyclicality risks
- 2017 JFS Paper (large 119 countries sample)
 - Which MAPs have countries used?
 - What effects on credit and house prices?
- Some results from Cerutti, Correa, Fiorentino & Segalla (IBRN project/dataset)
 - Intensity in usage across selected MAPs
- Conclusions
Why are MAPs Needed?

- Macroprudential Policy
- Microprudential Policy
- Macroeconomic Policies (monetary/fiscal/external)
- Price Stability
- Economic Activity
- Financial Stability
- Systemic Risk
- Idiosyncratic Risk
How Effective Have MAPs Been? Cross-Country Analyses

• Advantages/disadvantages
 – Can consider overall effects and some country differences
 – But identification of channels, endogeneity of MAP harder

• Examples (up to 57 countries)
 – Lim et al. (2011): LTV and DTI caps, credit growth, reserve requirements, dynamic provisioning mitigate procyclicality
 – IMF (2013): capital, RRs lower credit; LTV, capital reduce house prices; RR reduce portfolio inflows in floating EMs; effects of MAPs on GDP growth, sectoral allocations
 – Akinci and Olmstead-Rumsey (2015): Housing related MAPs (e.g., LTV) curb bank credit, housing credit, and house price inflation.
How Effective Have MAPs Been?
Country Case Studies (More Micro)

• Advantages/disadvantages
 – Better identification, control for specifics (e.g., banks’ cap)
 – But no ability to investigate role of country circumstances

• Examples
 – Jiménez et al (2015), Spain: dynamic provisioning tame credit supply and help smooth downturn, uphold credit
 – Aiyar, Calomiris and Wieladek (2016), UK: higher capital adequacy requirements can help mitigate lending booms
 – Wong, Fong, Li and Choi (2011), Hong Kong: targeted at real estate borrowing reduce real estate cycles
Overall Evidence: Still Early Days

• Evidence on effectiveness of MAPs
 • Some evidence of temporary cooling effect and building buffers for bad times. But not always sustained, seldom sufficient for bust
 • Rarely explicitly at externalities/market failures

• Don’t know side effects of MAPs
 – Financial, economic, political costs and risks

• Partly due to data and other limitations
 – Smaller samples. Limited time-periods. Sometimes only certain financial segments
How does our paper fit in the Literature?

External Validity:
Cross-country studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>119</td>
<td>2000-13</td>
<td>12</td>
</tr>
</tbody>
</table>

Documents MAPs usage (whether it is in use or not) and analyzes their effectiveness

Internal Validity:
Identification

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spain</td>
<td>1998Q4-2010Q4</td>
<td>DP</td>
</tr>
</tbody>
</table>

Identification: micro-level demand controls (e.g., firm*time FE's)
Cerutti, Claessens and Laeven (2015)

- Country coverage: 119 (31 AEs, 64 EMs, and 24 LICs)
- Time coverage: 2000-2013 (annual data)
- Usage = binary measure (whether in place or not)
- 12 MAPs out of the 18 surveyed in GMPI (IMF Survey):
 - Loan-to-Value Cap (LTV)
 - Debt-to-Income Ratio (DTI)
 - Time-Varying/Dynamic Loan-Loss Provisioning (DP)
 - Counter-Cyclical Requirements (CTC)
 - Leverage Ratio (LEV)
 - Capital Surcharges on SIFIs (SIFI)
 - Limits on Interbank Exposures (INTER)
 - Concentration Limits (CONC)
 - Limits on Foreign Lending (FC)
 - Reserve Requirements (RR)
 - Credit Growth Caps (CG)
 - Levy/Tax on Financial institutions (TAX)
More MAPs Use Over Time
ACs Less Than EMs & DCs

Figure 1. The Macroprudential Policy Index, by Income Level
ACs Use More Borrower-based
EMs Use Broad Set of MAPs

Advanced Countries

Emerging Markets

LTV_CAP DTI DP CTC LEV SIFI
INTER CONC FC RR_REV CG TAX
Regression setup

- Panel investigation of effects of MAPs. Model:
 \[Y_{i,t} = \alpha Y_{i,t-1} + \beta \times \text{Macropru}_{i,t-1} + \theta \times X_{i,t-1} + \mu_i + \varepsilon_{i,t} \]

- Lagged dependent variable
- Macropru = MPI (overall index); Individual; Groups: Borrower based; Financial institutions based
- Country-level: time-varying controls (lagged GDP growth+ crisis+ interest rate), fixed effects
- Arellano Bond GMM panel (to limit endogeneity, to take advantage of our large N & small T sample)
Table 4. Macroprudential Policies and Credit Growth: Main Regression Results

<table>
<thead>
<tr>
<th>Variables</th>
<th>All (1) - GMM</th>
<th>Advanced (2) - OLS</th>
<th>Emerging (3) - GMM</th>
<th>Developing (4) - GMM</th>
<th>Open (5) - GMM</th>
<th>Closed (6) - GMM</th>
<th>(7) - GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI</td>
<td>-7.637***</td>
<td>-2.112***</td>
<td>-1.376*</td>
<td>-5.327***</td>
<td>-6.743**</td>
<td>-2.910**</td>
<td>-6.605***</td>
</tr>
<tr>
<td></td>
<td>[1.876]</td>
<td>[0.651]</td>
<td>[0.781]</td>
<td>[1.619]</td>
<td>[3.076]</td>
<td>[1.251]</td>
<td>[2.073]</td>
</tr>
<tr>
<td>Credit Growth</td>
<td>0.245***</td>
<td>0.324***</td>
<td>0.485***</td>
<td>0.264***</td>
<td>0.157*</td>
<td>0.351***</td>
<td>0.231***</td>
</tr>
<tr>
<td></td>
<td>[0.0715]</td>
<td>[0.0512]</td>
<td>[0.134]</td>
<td>[0.0897]</td>
<td>[0.0872]</td>
<td>[0.0869]</td>
<td>[0.0798]</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>0.399</td>
<td>0.649***</td>
<td>0.123</td>
<td>0.427</td>
<td>0.902*</td>
<td>0.343</td>
<td>0.586**</td>
</tr>
<tr>
<td></td>
<td>[0.243]</td>
<td>[0.144]</td>
<td>[0.215]</td>
<td>[0.288]</td>
<td>[0.517]</td>
<td>[0.226]</td>
<td>[0.291]</td>
</tr>
<tr>
<td></td>
<td>[6.669]</td>
<td>[1.706]</td>
<td>[1.984]</td>
<td>[11.17]</td>
<td>[2.702]</td>
<td>[2.904]</td>
<td>[11.55]</td>
</tr>
<tr>
<td>Policy Rate</td>
<td>-1.071***</td>
<td>-0.697***</td>
<td>-0.952**</td>
<td>-0.645</td>
<td>-1.389***</td>
<td>-0.544</td>
<td>-0.958***</td>
</tr>
<tr>
<td></td>
<td>[0.340]</td>
<td>[0.196]</td>
<td>[0.417]</td>
<td>[0.394]</td>
<td>[0.284]</td>
<td>[0.346]</td>
<td>[0.358]</td>
</tr>
<tr>
<td>Countries</td>
<td>106</td>
<td>106</td>
<td>31</td>
<td>56</td>
<td>19</td>
<td>47</td>
<td>58</td>
</tr>
<tr>
<td>Observations</td>
<td>972</td>
<td>972</td>
<td>318</td>
<td>525</td>
<td>129</td>
<td>452</td>
<td>509</td>
</tr>
</tbody>
</table>

- MPI significant across specifications, also w/ OLS
- Lagged credit growth + significant, especially in AC
- Demand, GDP growth, +
- Crisis, drop in credit
- Some decrease with policy rate
- EM and closed countries driving the results more
Economic Effects are Large, but Controls Vary in Importance

- For ACs, a one standard deviation (STD) in MPI reduces credit growth by 2.2 percentage points. Large effect, equivalent to about 1/4th STD in credit growth (9.04) for ACs
- Even larger for EMs. A one STD in MPI reduces credit growth by 8.3 percentage points, about 2/3rd STD credit growth
- But MPI less effective in open economies, suggesting evasion
Table 5: Effects of Instrument by Subgroups

<table>
<thead>
<tr>
<th>Variables</th>
<th>BORROWER</th>
<th>FINANCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Advanced</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>BORROWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-11.06**</td>
<td>-2.16</td>
</tr>
<tr>
<td></td>
<td>[4.496]</td>
<td>[2.288]</td>
</tr>
<tr>
<td>FINANCIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Growth</td>
<td>0.277***</td>
<td>0.487***</td>
</tr>
<tr>
<td></td>
<td>[0.0707]</td>
<td>[0.125]</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>0.428*</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>[0.241]</td>
<td>[0.210]</td>
</tr>
<tr>
<td></td>
<td>[9.170]</td>
<td>[2.094]</td>
</tr>
<tr>
<td>Policy Rate</td>
<td>-0.833**</td>
<td>-0.937**</td>
</tr>
<tr>
<td></td>
<td>[0.391]</td>
<td>[0.428]</td>
</tr>
<tr>
<td>Countries</td>
<td>106</td>
<td>31</td>
</tr>
<tr>
<td>Observations</td>
<td>972</td>
<td>318</td>
</tr>
</tbody>
</table>

- Borrower based are important, even more so in EMs and closed.
- Financial institutions based matter as well, again less so in ACs.
Table 6: Effects of Individual Instruments on Several Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Corp Credit Growth</th>
<th>HH Credit Growth</th>
<th>House Price Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (1) Advanced (2) Emerging (3) Developing (4)</td>
<td>Advanced (5) Emerging (6)</td>
<td>Advanced (7) Emerging (8)</td>
</tr>
</tbody>
</table>

- **MPI**: -7.637*** -1.376* -5.327*** -6.743** -0.763*** 0.678 -1.022 -0.0449 -0.907
- **BORROWER**: -11.06** -2.16 -8.389** -14.45*** -1.047* -7.636** -0.982 -3.068 -1.039
- **FINANCIAL**: -8.838*** -0.983 -6.625*** -7.007 -0.487 -0.0857 1.552 -0.584 0.174 -1.159
- **DTI**: -24.16** -0.499 -15.56** -1.780* -11.72*** 0.584 -3.561* -0.477 -3.322
- **DP**: -16.39*** -12.73*** 1.233 6.182*** -3.297
- **CTC**: -8.629 -12.75 -5.731***
- **LEV**: -2.716 1.426 -3.963** 5.714* 1.332 13.12* 4.073*** 1.538 1.796
- **SIFI**: 9.853 -1.242 29.63*** 1.332 4.073*** 0.885 1.796
- **INTER**: -35.46** -0.462 -39.37** -10.53*** -1.228 3.899 0.72 -16.91***
- **CONC**: -29.84* -2.028 -9.287 2.861 -4.044 7.481 4.333** 6.218 3.503*
- **FC**: -9.489* -3.132 -12.23*** -17.46*** -2.644*** -1.146 0.0281 -8.596*** -3.627 1.565***
- **RR_REV**: -42.84* -22.74* -8.661*** -14.68*** 9.732***
- **CG**: -46.16 -14.35 -12.99
- **TAX**: -5.196 -1.356 -5.333 -1.701*** -0.637 6.413 0.0129 1.187 0.426 -2.616**
- **Countries** 106 31 56 19 22 9 22 9 31 18
- **Observations** 972 318 525 129 241 79 241 79 307 142

- Household credit responsive to borrower based, in EMs especially
- House prices not to borrower based
- Corporate sector credit not
- LTV affects overall credit, HH credit in EMs, corp. in ACs
- DTI also, espec. HH credit and corp. in EMs
- DP in EMs (users few), not corp. (+)
- FC strong, espec. in EMs, not HP
- RR in EMs, for all credit types, not HP (positive)
- INTER some effect on credit, HP EMs
Cross-Border and Country Effects

• Higher MPI → increases share of cross-border claims
• One STD increase in MPI increases cross-border ratio in open countries by 6 pp, about 1/3th its STD
⇒ Consider MAPs together with CFM tools
• Country characteristics, besides type, can matter
 • MPI not more effective with higher GDP/Capita or institutional development
 • But MPI less impact on credit in more developed financial systems, more flexible exchange rate, but not for de-jure more open
⇒ More developed, tap alternatives, circumvent MAPs
Additional Interaction Effects

• Higher Credit Growth \rightarrow extra decrease MPI impact
 • MAPs more effective in dampening when credit growth is high, especially in ACs and EMs
• Lower Credit Growth \rightarrow MPI impact increases
 • MAPs can be effective in maintaining credit growth in ACs and open economies
⇒ Impact of MAPS is asymmetric: less credit in upswing, more in downswing
⇒ Suggests need to consider phase of financial cycle
2017 IBRN Project: Measuring Intensity

External Validity:

Cross-country studies

<table>
<thead>
<tr>
<th>Cerutti, Claessens & Laeven (2017)</th>
<th>Countries</th>
<th>Period</th>
<th>Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>2000-13</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Documents MAPs usage (whether it is in use or not) and analyzes their effectiveness

<table>
<thead>
<tr>
<th>Cerutti, Correa, Fiorentino & Segalla (2017)</th>
<th>Countries</th>
<th>Period</th>
<th>Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>2000Q1-2014Q4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Objective: Capture changes in prudential policy intensity in a cross-country, cross-time consistent way

Internal Validity:

Identification

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>1998Q4-2010Q4</td>
<td>DP</td>
<td></td>
</tr>
</tbody>
</table>

Identification: micro-level demand controls (e.g., firm*time FE's)
Cerutti, Correa, Fiorentino, and Segalla (2017)

- Documents usage intensity of prudential policies
- Country coverage: 64 (30 AEs and 34 EMs)
- Time coverage: 2000-2014 (quarterly data)
- “Prudential” = wider coverage to avoid omissions
- “Usage intensity” = recording a tightening (+1), or loosening (-1) or no-change in each given quarter when the instrument is in place.
- 5 type of prudential instruments: interbank exposure limits, concentration limits, LTV caps, reserve requirements, and capital buffers.
Cerutti, Correa, Fiorentino, and Segalla (2017)

Usage of Prudential Policies

- RR and LTV have the largest number of tightening and loosening episodes
- CONC and INTER not often adjusted in intensity
- Cap. Req. tightened especially after GFC

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Distinct countries with instrument changes</th>
<th>Countries with tightening episodes</th>
<th>Countries with loosening episodes</th>
<th>Countries with instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSCB Real estate loans</td>
<td>22</td>
<td>20</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>SSCB Consumer loans</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>64</td>
</tr>
<tr>
<td>SSCB other loans</td>
<td>12</td>
<td>11</td>
<td>3</td>
<td>64</td>
</tr>
<tr>
<td>Concentration limits</td>
<td>22</td>
<td>21</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Interbank exposures</td>
<td>14</td>
<td>13</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>RR foreign currency</td>
<td>21</td>
<td>20</td>
<td>17</td>
<td>64</td>
</tr>
<tr>
<td>RR local currency</td>
<td>46</td>
<td>29</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>Loan to value ratio limits</td>
<td>36</td>
<td>33</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td>General capital requirements</td>
<td>55</td>
<td>55</td>
<td>0</td>
<td>57</td>
</tr>
</tbody>
</table>
Cerutti, Correa, Fiorentino, and Segalla (2017)

Usage of Prudential Policies

- RR loosening coincided with GFC and the European sovereign debt crisis
- LTV tightened often after GFC (counteracting loose monetary policies in several countries)
Cerutti, Correa, Fiorentino, and Segalla (2017)

Cyclical or counter-cyclical usage w.r.t. credit?

- Cap. SSB, CONC, INTER: not many statistically significant correlations and broadly distributed
- LTV and RR show more counter-cyclical usage
Cerutti, Correa, Fiorentino, and Segalla (2017)

Complementary usage with policy rates?

- LTV used with higher policy rates in some AEs, but also to tighten while lowering policy rates (e.g., Canada, Hong Kong)

- RR (Local) used more to (partially) offset policy rate changes, but there is general heterogeneity

![Graph showing correlations between LTV cap, RR foreign, and RR local for EM and AE]
General Conclusions

• Empirically: some evidence of impact of MAPs
 – Especially on credit (overall and HH credit)
 – But differentiate by country and individual MAPs
 – Also usage intensity analysis points in same direction

• Suggests scope for MAP
 – But need to be pragmatic, a times discretionary within frameworks, targeted at specific markets/objectives
 – Ensuring resilience can reinforce avoiding booms/busts

• But overall, MAP still at early stage
 – Interactions with other policies. Adaptations. Costs.
 Political economy concerns. Rules vs. discretion.
⇒ More data, research on effects, risks, calibrations, etc.