Building Central Bank Credibility: The Role of Forecast Performance

Michael McMahon Ryan Rholes

Department of Economics
University of Oxford
Motivation

- Managing expectations is crucial for the now dominate inflation-targeting framework
 - Effective communication requires credibility
 - Little is known in practice about the determinants, dynamics of central bank forecast credibility

This Paper:
Use a large online experiment to study how historical forecast performance impacts a central bank's forecast credibility

We Consider:
- Forecast Performance: How does overall forecast performance influence credibility?
- Timing: Does the timing of forecast errors matter for a central bank's forecast credibility?
- Communication: Can central banks 'talk their way out' of a low-credibility position?
Motivation

- Managing expectations is crucial for the now dominate inflation-targeting framework
 - Effective communication requires credibility
 - Little is known in practice about the determinants, dynamics of central bank forecast credibility

This Paper: Use a large online experiment to study how historical forecast performance impacts a central bank’s forecast credibility
Motivation

▶ Managing expectations is crucial for the now dominate inflation-targeting framework
 ▶ Effective communication requires credibility
 ▶ Little is known in practice about the determinants, dynamics of central bank forecast credibility

This Paper: Use a large online experiment to study how historical forecast performance impacts a central bank’s forecast credibility

We Consider:

▶ Forecast Performance: How does overall forecast performance influence credibility?
▶ Timing: Does the timing of forecast errors matter for a central bank’s forecast credibility?
▶ Communication: Can central banks ‘talk their way out’ of a low-credibility position?
Preview of Results

Contributions

1. Relationship between performance and updating is flatter than theory predicts
 - Under-punish consistently poor performance
 - Under-reward excellent performance
 - Over-precision/Under-precision

2. Timing of errors matters a lot - recent performance is key.
3. Communication can (sometimes) help offset poor recent performance.

Implications
Credibility evolves endogenously; rebuilding credibility could be harder if errors reduce capacity of central bank to influence expectations.
Preview of Results

Contributions

1. Relationship between performance and updating is flatter than theory predicts
 - Under-punish consistently poor performance
 - Under-reward excellent performance
 - Over-precision/Under-precision

2. Timing of errors matters a lot - recent performance is key.
3. Communication can (sometimes) help offset poor recent performance.

Implications

Credibility evolves endogenously; rebuilding credibility could be harder if errors reduce capacity of central bank to influence expectations.
Bayesian Updating

- Participant i prior belief about inflation given by:
 \[\pi_i \sim \mathcal{N}\left(\bar{\pi}_i, \frac{1}{\alpha_i}\right), \tag{1} \]

 - $\bar{\pi}_i$ is i’s initial point forecast
 - α_i is a measure of i’s forecast precision.

- The central bank provides a potentially biased signal:
 \[\pi_{cb} = \pi + \tilde{\epsilon}, \quad \tilde{\epsilon} \sim \mathcal{N}\left(\gamma, \frac{1}{\beta}\right). \tag{2} \]

 - β is related to the precision of the central bank forecast
 - γ is a possible systematic bias in the CB’s inflation forecast.
 - Assume $\gamma = 0$ for now.
The Role of Bias

The optimal Bayesian inflation forecast:

\[\mathbb{E}(\pi|\pi_{cb}) = \frac{\alpha \bar{\pi}_i + \beta \pi_{cb}}{\alpha + \beta} \]

Optimal update rate:

\[u^*_i \equiv \frac{\mathbb{E}(\pi|\pi_{cb}) - \bar{\pi}_i}{(\pi_{cb} - \bar{\pi}_i)} = \frac{\beta}{\alpha + \beta} \]

if \(\gamma \neq 0 \) use adjusted signal \((\pi_{cb} - \gamma) \)

1. If \(\beta \to \infty, \alpha \to 0 \Rightarrow u^*_i = 1 = 100\% \).
2. For any \(\beta, \alpha \uparrow \) (prior precision \(\uparrow \)), update less \((u^*_i \downarrow) \).
3. For any \(\alpha, \beta \uparrow \) (signal precision \(\uparrow \)), update more \((u^*_i \uparrow) \).
Participants’ Experience

Large online experiment (Prolific) with US users

1. Short survey
 - Economics knowledge
 - Understanding of and trust in various public institutions
 - Preferences for obtaining economic information
 - Familiarity with prevailing economic conditions
Participants’ Experience

Large online experiment (Prolific) with US users

1. Short survey

2. Instructions for inflation forecasting task (accessible later)
 - Information they will get
 - How to interact with the available information
 - How to interact with our software
 - How we incentivized their forecasts

3. Comprehension quiz

4. Forecasting task

5. Informed which forecast had been selected for payment

6. Non-compulsory survey-of-decisions
Participants’ Experience

Large online experiment (Prolific) with US users

1. Short survey

2. Instructions for inflation forecasting task (accessible later)

3. Comprehension quiz
 - 5 questions designed to test subjects’ understanding of our experimental instructions
 - Must answer all five questions correctly to proceed
 - More than 2 submissions with at least one wrong answer ⇒ Removed.
Participants’ Experience

Large online experiment (Prolific) with US users

1. Short survey
2. Instructions for inflation forecasting task (accessible later)
3. Comprehension quiz
4. Forecasting task
 ▶ 3 × decision periods
Participants’ Experience

Large online experiment (Prolific) with US users

1. Short survey
2. Instructions for inflation forecasting task (accessible later)
3. Comprehension quiz
4. Forecasting task
5. Informed which forecast had been selected for payment
6. Non-compulsory survey-of-decisions
Decision Periods

- Decision periods are independent
- Randomly select one forecast for bonus payment
Incentives

- Incentiving point forecasts:

\[F_{i,13} = 2^{-|E_{i,12}\{\pi_{13}\} - \pi_{13}|}. \] (5)

- Perfect forecast yields \(F_{i,13} = 1 \)
- \(F_{i,13} \) reduced by half each 1pp increase in forecasts error

- Range forecast:

\[
U_{i,t}(r_{i,t}) = \begin{cases}
0 & \pi_{i,13} \notin [\underline{u}_{i,t}, \overline{u}_{i,t}] \\
\phi\left(\frac{1}{1+r_{i,t}}\right) & \pi_{i,13} \in [\underline{u}_{i,t}, \overline{u}_{i,t}].
\end{cases}
\] (6)

- On average, participants
 - earned $3.75 for participation, $1.25 for bonus
 - equates to $13.20 per hour, on average
 - took 10-15 minutes to complete the experiment
3 Core Histories

Early

Late

Consistent

Quarter

Inflation

Forecast

Error
Summary of Forecast Performance by History (bps)

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Full Sample</th>
<th>γ HistAvg</th>
<th>γ LastYear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Data</td>
<td>110</td>
<td>95</td>
<td>34</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistent - Great</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>06</td>
<td>08</td>
</tr>
<tr>
<td>Consistent - Good</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Consistent - Moderate</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>06</td>
<td>-07</td>
</tr>
<tr>
<td>Consistent - Bad</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>02</td>
<td>-19</td>
</tr>
<tr>
<td>Consistent - Terrible</td>
<td>171</td>
<td>171</td>
<td>171</td>
<td>171</td>
<td>-06</td>
<td>-42</td>
</tr>
<tr>
<td>Consistent - Bad</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>02</td>
<td>-19</td>
</tr>
<tr>
<td>Early</td>
<td>171</td>
<td>65</td>
<td>13</td>
<td>83</td>
<td>-51</td>
<td>12</td>
</tr>
<tr>
<td>Late</td>
<td>13</td>
<td>65</td>
<td>171</td>
<td>83</td>
<td>-52</td>
<td>-171</td>
</tr>
</tbody>
</table>

Numbers are average absolute forecast error in basis points.
Forecast Performance
Treatment Summary: Forecast Performance

<table>
<thead>
<tr>
<th>History 1</th>
<th>History 2</th>
<th>History 3</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T1a$</td>
<td>Early</td>
<td>Late</td>
<td>Great</td>
</tr>
<tr>
<td>$T1b$</td>
<td>Late</td>
<td>Early</td>
<td>Great</td>
</tr>
<tr>
<td>$T2a$</td>
<td>Early</td>
<td>Late</td>
<td>Good</td>
</tr>
<tr>
<td>$T2b$</td>
<td>Late</td>
<td>Early</td>
<td>Good</td>
</tr>
<tr>
<td>$T3a$</td>
<td>Early</td>
<td>Late</td>
<td>Moderate</td>
</tr>
<tr>
<td>$T3b$</td>
<td>Late</td>
<td>Early</td>
<td>Moderate</td>
</tr>
<tr>
<td>$T4a$</td>
<td>Early</td>
<td>Late</td>
<td>Bad</td>
</tr>
<tr>
<td>$T4b$</td>
<td>Late</td>
<td>Early</td>
<td>Bad</td>
</tr>
<tr>
<td>$T5a$</td>
<td>Early</td>
<td>Late</td>
<td>Terrible</td>
</tr>
<tr>
<td>$T5b$</td>
<td>Late</td>
<td>Early</td>
<td>Terrible</td>
</tr>
</tbody>
</table>
Results - Forecast Performance
Results - Forecast Performance
Effect of Timing
What effect of time profile of errors?

▶ Use the full history to estimate β:

$$
\beta^{-1} = \frac{1}{12} \sum_{j=1}^{12} |E_{j-1}^{CB}(\pi_j) - \pi_j|.
$$ \hspace{1cm} (7)

▶ Or, weight more heavily recent performance:

$$
\beta^{-1} = \lambda \sum_{j=0}^{11} (1 - \lambda)^j |E_{t-2-j}^{CB}(\pi_{t-1-j}) - \pi_{t-1-j}|.
$$ \hspace{1cm} (8)
Treatments - Timing

<table>
<thead>
<tr>
<th>History 1</th>
<th>History 2</th>
<th>History 3</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>Late</td>
<td>Consistent</td>
<td>97</td>
</tr>
<tr>
<td>Early</td>
<td>Consistent</td>
<td>Late</td>
<td>94</td>
</tr>
<tr>
<td>Late</td>
<td>Early</td>
<td>Consistent</td>
<td>80</td>
</tr>
<tr>
<td>Late</td>
<td>Consistent</td>
<td>Early</td>
<td>88</td>
</tr>
<tr>
<td>Consistent</td>
<td>Early</td>
<td>Late</td>
<td>79</td>
</tr>
<tr>
<td>Consistent</td>
<td>Late</td>
<td>Early</td>
<td>91</td>
</tr>
</tbody>
</table>
Results - Timing

-50 -25 0 25 50 75

Early Consistent Late Deviation Update Optimal Update U*

Medium Reverse Within
Results - Timing - Estimated λ

<table>
<thead>
<tr>
<th></th>
<th>γ_0</th>
<th>$\gamma_{HistAvg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>0.245</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>(0.0170)</td>
<td>(0.0160)</td>
</tr>
<tr>
<td>Consistent</td>
<td>0.523</td>
<td>0.511</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Late</td>
<td>0.622</td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td>(0.0198)</td>
<td>(0.0222)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
Results - Timing

Weighting Function for Estimated λ

Quarters in Past

Early

Late

Histogram Avg

Histogram Avg
Dynamics of Perceived Credibility

![Graph showing dynamics of perceived credibility over Updates, with density on the Y-axis and updates on the X-axis. The graph compares two categories: Terrible (blue) and Late (red). Peaks at 22.6 and 31.38 indicate changes in perceived credibility.]
Dynamics of Perceived Credibility
Effect of Timing
We introduce written comms. into *Late* in E,C,L
Consider 6 written reports:

- **Control**: General description of central banking
- **Control + Outlook**: Includes outlook on inflation that matches graphical forecast
- **Exogenous + Relative Performance**: Drop in forecast performance resulted from *exogenous shock* and bank has performed better or worse than counterparts
- **Endogenous + Relative Performance**: Drop in forecast performance resulted from *endogenous forces* and bank has performed better or worse than counterparts
<table>
<thead>
<tr>
<th>Name</th>
<th>Sample Size</th>
<th>Flesh-Kincaid</th>
<th>Reading Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>160</td>
<td>8</td>
<td>10th-12th</td>
</tr>
<tr>
<td>Control + Outlook</td>
<td>151</td>
<td>8.3</td>
<td>10th-12th</td>
</tr>
<tr>
<td>Exogenous + Better</td>
<td>131</td>
<td>8.5</td>
<td>10th-12th</td>
</tr>
<tr>
<td>Exogenous + Worse</td>
<td>152</td>
<td>8.5</td>
<td>10th-12th</td>
</tr>
<tr>
<td>Endogenous + Better</td>
<td>157</td>
<td>8.4</td>
<td>10th-12th</td>
</tr>
<tr>
<td>Endogenous + Worse</td>
<td>137</td>
<td>8.4</td>
<td>10th-12th</td>
</tr>
</tbody>
</table>
Results - Communication

-10 10 30 50 70
U* U* HistAvg U* HistAvg Optimal U* HistAvg Optimal U* HistAvg Optimal
Conclusion

What have we learned so far?

▶ Forecast performance matters but not as sharply as theory predicts
▶ Credibility is endogenous, dynamics are asymmetric:
 ▶ Recency bias
 ▶ Credibility takes longer to build than to lose
▶ MPRs, IRs, etc. are valuable as a way of rationalizing the past and reinforcing outlook

Implications

Credibility evolves endogenously; rebuilding credibility could be harder if errors reduce capacity of central bank to influence expectations.
Central Bank Announcement

The Fed uses interest rate policy to stabilize prices and keep employment high. We base monetary policy on how healthy the economy is now and how healthy we think it will be in the future. We use forecasts to guide our decisions. We do our best when making forecasts but the world is uncertain, and forecasts are never perfect.

Over the last year, our forecasts underpredicted inflation. This is because the pandemic lasted longer than initially expected and caused supply shortages. Our forecasts over this period were more accurate than private sector forecasts and other central banks. Our best guess is that inflation will decrease next quarter.
Longer-term Forecasts

![Graph showing the deviation of possible updates for 'Early', 'Consistent', and 'Late' periods.

- Red circles represent 'Update' values.
- Blue triangles represent 'Deviation' values.
- Green diamonds represent 'Optimal Update' values.

The x-axis indicates different time periods: 'Early', 'Consistent', and 'Late'.

The y-axis represents a deviation scale from -25 to 75.]
Changing the direction of forecast errors

![Diagram showing changing direction of forecast errors with categories Early, Consistent, Late, and types of deviation and optimal update marked with symbols.]
Within-subject forecast credibility measure