Monetary Policy and Housing Volatility

Klaus Adam
University of Mannheim
SUERF-ESM Panel, 16 November 2023

November 16, 2023
Four unfavorable macro trends in advanced economies:

1. secular decline in growth rates (Summers (2014))
2. secular decline in natural interest rates (Holston et al. (2017))
3. upward trend in the volatility of housing prices (NEW)
4. upward trend in the volatility of natural rates (NEW)
Introduction

- Trends accelerated with 2008 Financial Crisis
Trends accelerated with 2008 Financial Crisis

Implications of these trends for monetary policy?

"Falling Natural Rates, Rising Housing Volatility and the Optimal Inflation Target"

with Oliver Pfäuti (University of Texas) and Timo Reinelt (ECB)

available at: www.klaus-adam.com
Growth & interest rates trends

Chart 1
Natural Rates and Long-Term Growth Rates in Advanced Economies

(growth rates and interest rates in percentage points)

Sources: Holston et al. (2017), Fujiwara et al. (2016).
Volatility changes at macro level difficult to measure:
- persistent variables (price-to-rent/dividend ratios, natural rates)
- few (independent) observations

Must compare volatility changes over long time periods
≈1960-1990 versus 1990-2020
Chart 2
Standard Deviation of Valuation Ratios in Housing and Stock Markets

Notes: The figure reports the standard deviation of the two valuation ratios. Numbers reported at the bottom are robust p-values (Newey-West) for the null hypothesis that the standard deviations in the sub-samples are identical. Error bands indicate robust 90% confidence intervals for the estimated standard deviation. The reported numbers for the price-to-rent ratio differ from the ones in Adam, Pfau et al. (2020) because they compute the standard deviation in terms of percent deviation from sample mean, which leads to very similar conclusions.
Chart 3
Change in Average Natural Rates vs. Change in Std. Deviation of Valuation Ratios (Pre-1990 vs. Post-1990)

Notes: The change in the average natural rate is based on the natural rate estimates of Holston et al. (2017) and Fujiwara et al (2016). The change of the standard deviations of the PR-ratio and PD-ratio is from Chart 2.
Chart 4
Correlation between Valuation Ratios and Investment Rates

Notes: The figure reports the correlation between the valuation ratios and the linearly detrended investment-to-GDP ratios. Error bands indicate robust 90% confidence intervals (Newey-West) and have been computed using the delta-method. Panel (a) is from Adam, Pfaeutl and Reinelt (2020).
Rising Standard Deviation of the Natural Rate

Chart 5
Change in Average Natural Rate vs. Change in Std. Deviation of Natural Rate
(Pre-1990 vs. Post-1990)

Source: Adam, Pineuti and Reinelt (2020).
Notes: The change in the average natural rate is based on the natural rate estimates of Hoislton et al. (2017) and Fujimara et al (2016). The standard deviation of the natural rate has been computed by linearly detrending the natural rate estimates.
Can we tie all these macro trends coherently together?
Can we tie all these macro trends coherently together?

Ultimate driving force: lower long-term growth rates

Variety of possible reasons:
- New ideas increasingly harder to find (e.g. Bloom et al. 2020)
- Ageing populations: risk-attitudes & creativity

Take trend growth decline as given, when discussing mon. policy.
The Big Picture

- Lower growth rates \Rightarrow lower real interest rates
The Big Picture

- Lower growth rates \Rightarrow lower real interest rates
- Lower real interest rates \Rightarrow increased asset price volatility
The Big Picture

- Lower growth rates \Rightarrow lower real interest rates
- Lower real interest rates \Rightarrow increased asset price volatility
- If price volatility not fully efficient (as investor surveys suggest) \Rightarrow more variable natural rate of interest
Lower growth rates \Rightarrow lower real interest rates

Lower real interest rates \Rightarrow increased asset price volatility

If price volatility not fully efficient (as investor surveys suggest)
\Rightarrow more variable natural rate of interest

Reason: MP needs to counteract inefficient asset price fluctuations
Outline of Remaining Talk

1. Try to convince you that asset price volatility not fully efficient

2. Implications of lower growth + higher housing volatility for MP
Consider the following two linear projections:

\[
\frac{HP_{t+4}}{HP_t} = a + c\frac{P_{t-1}}{R_{t-1}} + u_t
\]

\[
E_t^S \left[\frac{HP_{t+4}}{HP_t} \right] = a + c\frac{P_{t-1}}{R_{t-1}} + u_t
\]

Rational forecasts: \(c = c \)
Consider the following two linear projections:

\[
\frac{HP_{t+4}}{HP_t} = a + c \frac{P_{t-1}}{R_{t-1}} + u_t
\]

\[
E_t^S \left[\frac{HP_{t+4}}{HP_t} \right] = a + c \frac{P_{t-1}}{R_{t-1}} + u_t
\]

Rational forecasts: \(c = c\)

Data reveals stunning forecast bias

Actual returns countercyclical: \(c < 1\)

Expected returns pro-cyclical: \(c > 1\)
Consider the following two linear projections:

\[
\frac{HP_{t+4}}{HP_t} = a + c \frac{P_{t-1}}{R_{t-1}} + u_t
\]

\[
E_t^S \left[\frac{HP_{t+4}}{HP_t} \right] = a + c \frac{P_{t-1}}{R_{t-1}} + u_t
\]

Rational forecasts: \(c = c \)

Data reveals stunning forecast bias
- Actual returns countercyclical: \(c < 1 \)
- Expected returns pro-cyclical: \(c > 1 \)

Bias induced by extrapolative expectations
\(\Rightarrow \) fluctuations in expectations contribute to AP volatility
Consider the following two linear projections:

\[
\frac{HP_{t+4}}{HP_t} = a + c \frac{P_{t-1}}{R_{t-1}} + u_t
\]

\[
E_t^S \left[\frac{HP_{t+4}}{HP_t} \right] = a + c \frac{P_{t-1}}{R_{t-1}} + u_t
\]

Rational forecasts: \(c = c \)

Data reveals stunning forecast bias
- Actual returns countercyclical: \(c < 1 \)
- Expected returns pro-cyclical: \(c > 1 \)

Bias induced by extrapolative expectations
\(\Rightarrow \) fluctuations in expectations contribute to AP volatility

Belief-driven fluctuations *increase* as real interest rates fall
Table 2
The Different Cyclicality of Realized and Expected Capital Gains in Housing Markets

Michigan survey, 1yr house price growth

<table>
<thead>
<tr>
<th>Survey average</th>
<th>Survey median</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{c}</td>
<td>\hat{c}</td>
</tr>
<tr>
<td>$-E(\hat{c} - \hat{c})$</td>
<td>$-E(\hat{c} - \hat{c})$</td>
</tr>
<tr>
<td>0.0607</td>
<td>0.0187</td>
</tr>
</tbody>
</table>
Table 1

The Different Cyclicality of Realized and Expected Returns/Capital Gains in Stock Markets

<table>
<thead>
<tr>
<th>Survey average</th>
<th>Survey median</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{c} \cdot 10^3)</td>
<td>(\hat{c} \cdot 10^3)</td>
</tr>
<tr>
<td>UBS, >100k, 1 yr, SPF</td>
<td>0.58</td>
</tr>
<tr>
<td>UBS, >100k, 1 yr, Michigan</td>
<td>0.57</td>
</tr>
<tr>
<td>UBS, all, 1 yr, SPF</td>
<td>0.57</td>
</tr>
<tr>
<td>UBS, all, 1 yr, Michigan</td>
<td>0.56</td>
</tr>
<tr>
<td>CFO, 1 yr, SPF</td>
<td>0.20</td>
</tr>
<tr>
<td>CFO, 1 yr, Michigan</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Panel A. S&P 500, real returns

Panel B. Dow Jones, real price growth

Shiller, 1 yr, SPF	0.26	-1.22	0.235	0.0011	0.24	-1.20	0.265	0.0015
Shiller, 1 yr, Michigan	0.33	-1.22	0.232	0.0006	0.31	-1.20	0.238	0.0007
Shiller, 10 yrs, SPF	4.73	-7.25	-1.367	0.0000	6.15	-7.24	-1.440	0.0000
Shiller, 10 yrs, Michigan	4.24	-7.25	-1.423	0.0000	5.65	-7.24	-1.462	0.0000

Source: Table 1A from Adam, Marcet and Beutel (2017).

Notes: The columns labeled \(\hat{c} \) report the estimate of the coefficient \(c \) in equation (2). The columns labeled \(\hat{c} \) report the estimate of the coefficient \(c \) in equation (2). The columns labeled bias report the small sample bias correction and the columns labeled \(p\)-value report the small sample bias-corrected \(p\)-value for the null hypothesis that \(c = 0 \). The leftmost column indicates the survey sources (UBS Survey, Chief Financial Officer Survey and Robert Shiller’s investor survey), the horizon of the forecast (1 year, 10 years), the way real returns have been computed (inflation expectations from the Survey of Professional Forecasters (SPF), inflation expectations from the Michigan Survey), and various wealth categories (all: all investors in the survey, >100k: only investors with more than 100k USD in financial wealth).
Monetary Policy Implications

- How do these macro trends affect the *optimal* inflation target?
- How should monetary policy deal with asset price movements?
Definition of real interest rates:

\[r_t = i_t - E_t[\pi_{t+1}] \]

Taking the average over time/expectations:

\[E[r_t] = E[i_t] - E[\pi_{t+1}] \]
Monetary Policy Implications: Optimal Inflation Target

- Definition of real interest rates:
 \[r_t = i_t - E_t[\pi_{t+1}] \]

- Taking the average over time/expectations:
 \[E[r_t] = E[i_t] - E[\pi_{t+1}] \]

- \(E[\pi_{t+1}] \): equal to inflation target
- \(E[r_t] \): equal to average natural rate
Definition of real interest rates:

\[r_t = i_t - E_t[\pi_{t+1}] \]

Taking the average over time/expectations:

\[E[r_t] = E[i_t] - E[\pi_{t+1}] \]

- \(E[\pi_{t+1}] \): equal to inflation target
- \(E[r_t] \): equal to average natural rate

For given inflation target:

Average nominal rates fall in tandem with natural rate!
Lower average nominal rates: MP more often constrained by zero lower bound constraint on nominal rates!

Effect stronger if volatility of the natural rate increases as av. natural rate falls:
larger & more inefficient asset price fluctuations

Optimal monetary policy response:
If real interest rates cannot be lowered by lowering nominal rate
=>\Rightarrow lower real rate by promising more inflation!
Optimal Inflation Target Increase Due to Zero Lower Bound

![Graph showing the relationship between steady state natural rate and the optimal inflation target increase. The graph compares subjective beliefs and rational expectations.](image-url)
Belief fluctuations amplify fundamental AP fluctuations

Asset price fluctuations have real effects (e.g. via investment)

Inefficient investment fluctuations:
house price boom \Rightarrow oversupply of housing

Monetary policy should lean-against asset price fluctuations: Adam & Woodford (2021), Winkler (2019), Adam, Pfaeuti & Reinelt (2023)
Optimal Policy: Leaning Against Housing Prices

- Housing demand (ξ) (deviation from baseline)
- Housing price (deviation from baseline)
- Capital gain optimism (λ)
- Output gap (deviation from baseline)
- Inflation (deviation from baseline)
- Nominal interest rate (deviation from baseline)
Conclusions

- Unfavorable macro trends have profound implications for MP
 - lower bound on nominal rates increasingly relevant
 - optimal to increase the inflation target
 - optimal to ‘lean against’ asset price fluctuations
Conclusions

- Unfavorable macro trends have profound implications for MP
 - lower bound on nominal rates increasingly relevant
 - optimal to increase the inflation target
 - optimal to ‘lean against’ asset price fluctuations

- Reversing unfavorable macro trends: boost long-term growth trend
(a) Standard Deviation of the Price-to-Rent Ratios for Different Sample Splits.