A Single Monetary Policy for Heterogeneous Labour Markets: The Case of the Euro Area

Sandra Gomes1 \hspace{2cm} Pascal Jacquinot2 \hspace{2cm} Matija Lozej3

1Banco de Portugal
2European Central Bank
3Central Bank of Ireland

These are the views of the authors and do not represent the views of the Banco de Portugal, European Central Bank, the Central Bank of Ireland, or of the eurosystem.

50th OeNB Economics Conference and 60th SUERF Anniversary Conference, 2023

22-23 May 2023
Both the ECB and the FED in their recent strategy reviews paid more attention to employment and inequality.

- The ECB: "...the medium-term orientation provides flexibility to take account of employment in response to economic shocks, giving rise to a temporary trade-off between short-term employment and inflation stabilisation without endangering medium-term price stability." and "... important to [...] account for uncertainty, heterogeneity and ongoing structural changes shaping the outlook for economic activity and employment in the euro area and its member countries."

- The FOMC reviewed its strategy and clarified the maximum employment goal. "Our revised statement reflects our appreciation of a strong labour market, particularly for many in low- and moderate-income communities..." (J. Powell)
Job finding rates by educational attainment in the EA

EA countries differ (trade direction...), but country-specific labour institutions are typical (computed from OECD data):

<table>
<thead>
<tr>
<th>Country</th>
<th>Below upp. secondary</th>
<th>Upper sec., non-tertiary</th>
<th>Tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.40</td>
<td>0.36</td>
<td>0.20</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.10</td>
<td>0.18</td>
<td>0.33</td>
</tr>
<tr>
<td>Finland</td>
<td>0.14</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td>France</td>
<td>0.14</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>Germany</td>
<td>0.21</td>
<td>0.29</td>
<td>0.35</td>
</tr>
<tr>
<td>Greece</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.22</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.10</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>Italy</td>
<td>0.15</td>
<td>0.14</td>
<td>0.24</td>
</tr>
<tr>
<td>Latvia</td>
<td>0.16</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>0.25</td>
<td>0.26</td>
<td>0.35</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>0.12</td>
<td>0.23</td>
<td>0.34</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.28</td>
<td>0.07</td>
<td>0.30</td>
</tr>
<tr>
<td>Spain</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
</tr>
</tbody>
</table>
What we do

- Consider a typical two-agent New Keynesian model:
 - Constrained households consume their labour income (minus taxes, plus eventual transfers)...
 - ...so their consumption = their disposable income...
 - ...so disposable income is the only (!) determinant of their consumption...
 - ...and then the typical assumption is that wages of the unconstrained households ("the rich") behave exactly the same as wages of the constrained households ("the poor").

- We relax this assumption and allow for different unemployment rates, matching probabilities, separation rates...

- We look at monetary policy and inflation-(un)employment trade-off
Model of the euro area and the global econ. (EAGLE)
We have several dimensions of heterogeneity in the model:

- Cross-country heterogeneity within the euro area (arising from different trade orientation, etc.)
- Each country is modelled as a two-agent (TANK) model
- Each type of agents has its own labour market segment with search-and-matching
- Each type of agents has their own wage-setting, with the distinction between wages of new hires and existing workers
Targeting rules

Benchmark Taylor rule

\[r_t = \varphi_r r_{t-1} + (1 - \varphi_r) (r^* + \pi^* + \varphi_{\pi} (\pi_t - \pi^*) + \varphi_u \hat{u}_t) + \varepsilon^R_t \]

Taylor rule with an asymmetric response to unemployment

\[r_t = \varphi_r r_{t-1} + (1 - \varphi_r) (r^* + \pi^* + \varphi_{\pi} (\pi_t - \pi^*) + I_{u > u^*} \varphi_u \hat{u}_t) + \varepsilon^R_t \]

Average inflation targeting rule (4 y-o-y rates)

\[r_t = \varphi_r r_{t-1} + (1 - \varphi_r) \left(r^* + \pi^* + \varphi_{\pi} \left(\bar{\pi}_T^T - \pi^* \right) + \varphi_u \hat{u}_t \right) + \varepsilon^R_t \]
We pay particular attention to the calibration of the labour market:

- Compute job finding probabilities for Ricardian and HtM households (OECD, search duration) to match matching efficiencies
- Use replacement ratios from OECD (for Ricardian and HtM) to get vacancy posting costs
- Use unemployment by educational attainment to match separation rates
- Calibrate disutility weight to normalise hours worked to 1 in the steady state
Results

Simulations

We simulate two types of shocks:

- **Inflationary supply shock**
 - Increase in markups in tradable and non-tradable sectors
 - ⇒ Monetary policy cannot stabilise output/employment and simultaneously fight inflation

- **Expansionary demand shock**
 - Preference shock and investment-specific demand shock
 - ⇒ Monetary policy can stabilise output/employment and fight inflation

We look at the performance of the three monetary policy rules, with emphasis on employment and heterogeneity between and within EA countries.
Results

Inflationary supply shock - EA-wide

With IT

Output

With ASUT

Unemployment

With AIT

Inflation

With $\phi_u=2$

With $\phi_u=0$

ASUT with $\phi_u=3$

SG, PJ, ML (BdP, ECB, CBI)

MP Rules and Labour

22-23 May 2023 10 / 18
Inflationary supply shock - EA-wide

Results

Export

With IT

With ASUT

With AIT

Consumption

With IT

With ASUT

With AIT

Investment

With IT

With ASUT

With AIT

With $\phi_u = 2$

With $\phi_u = 0$

ASUT with $\phi_u = 3$

SG, PJ, ML (BdP, ECB, CBI)
MP Rules and Labour
22-23 May 2023
11/18
Inflationary supply shock - country-specific

Results

![Graphs showing output, unemployment, and other economic indicators with various parameters and scenarios.]
Inflationary supply shock - country-specific labour
Expansionary demand shock - EA-wide

With IT

With ASUT

With AIT

Output

Unemployment

Inflation

SG, PJ, ML (BdP, ECB, CBI) MP Rules and Labour 22-23 May 2023 14/18
Expansionary demand shock - EA-wide

Results

With IT

With ASUT

With AIT

Export

Consumption

Investment

SG, PJ, ML (BdP, ECB, CBI) MP Rules and Labour 22-23 May 2023
Expansionary demand shock - country-specific

Results

With IT

Output

Unempl. - Ricard.

Unempl. - HM

- **REA, ϕ_u = 2**
- **REA, ϕ_u = 0**
- **REA, ASUT, ϕ_u = 3**
- **Home, ϕ_u = 2**
- **Home, ϕ_u = 0**
- **Home, ASUT, ϕ_u = 3**
Expansionary demand shock - country-specific labour

- With IT
- With ASUT
- With AIT

Vacancies - HtM
Vacancies - Ricardian
C of HtM / C Ric.

REA, $\phi_u = 2$
REA, $\phi_u = 0$
REA, ASUT, $\phi_u = 3$
Home, $\phi_u = 2$
Home, $\phi_u = 0$
Home, ASUT, $\phi_u = 3$
Key findings

- Responding to unemployment in the EA has the following implications:
 - It results in stronger unemployment decrease after expansionary demand shocks and lower unemployment increase after a contractionary supply shock.
 - It tends to lower inequality between and within EA countries.
 - It leads to somewhat faster increase in inflation, but also faster return of inflation after a supply shock.

- Responding to inflation alone causes large fluctuations between and within EA countries.
Counterfactual on REA - Consumption

With IT

Vacancies - HtM

0 10 20 30
0
20
40
60

Vacancies - Ricardian

0 10 20 30
0
20
40
60

C of HtM / C Ric.

0 10 20 30
0
2
4

REA, $\phi_u=2$ (ASUT $\phi_u=3$)
REA, $\phi_u=0$ (ASUT $\phi_u=0$)
REA, CTF, $\phi_u=2$ (ASUT $\phi_u=3$)
REA, CTF, $\phi_u=0$ (ASUT $\phi_u=2$)

SG, PJ, ML (BdP, ECB, CBI)
MP Rules and Labour
22-23 May 2023
20/18
Counterfactual on REA - Wages

With IT

With ASUT

With AIT

REA, \(u = 2 \) (ASUT \(u = 3 \))

REA, \(u = 0 \) (ASUT \(u = 0 \))

REA, CTF, \(u = 2 \) (ASUT \(u = 3 \))

REA, CTF, \(u = 0 \) (ASUT \(u = 2 \))
Labour market flows

We have 2 segments s ($s = i$ for Ricardian and $s = j$ for HtM):

$$nde_{s,t} = (1 - \delta_{x,s}) \ nde_{s,t-1} + M_{s,t},$$

where $M_{s,t}$ is the number of new matches defined as:

$$M_{s,t} = \phi_{s,M}(un_{s,t})^\mu(vac_{s,t})^{1-\mu} = p_w^{s,t}un_{s,t} = p_f^{s,t}vac_{s,t},$$

The probability for a searching worker to find a job is

$$p_w^{s,t} = \frac{M_t}{un_{s,t}} = \phi_{s,M}\left(\frac{vac_{s,t}}{un_{s,t}}\right)^{1-\mu}$$

and the probability of a firm finding a worker is

$$p_f^{s,t} = \frac{M_{s,t}}{vac_{s,t}} = \phi_{s,M}\left(\frac{vac_{s,t}}{un_{s,t}}\right)^{-\mu}$$
Wages and hiring

We adopt the staggered wage bargaining from Bodart et al. (2006) and de Walque et al. (2009), by labour market segments and by countries (blocs):

- In every segment, for a worker and for a firm, there are two value functions, one for a newly-renegotiated wage $w_{s,t}^*$ and one for the existing (average) wage $w_{s,t}$
- Newly-renegotiated wage is determined by Nash bargaining
- Firms hire workers with some probability at newly-renegotiated wage or at an average wage of the period
Value functions - firm

Let $A^F(w_{s,t}^*)$ denote the value of a job for a firm employing a worker from household type $s \in [i, j]$, where $w_{s,j}^*$ is the renegotiated wage. It will be convenient to use this value in marginal utility terms, so we define $A^F(w_{s,t}^*) \equiv u'(c_{s,t})A^F(w_{s,t}^*)$. The value of a job with a renegotiated wage for a labour firm can then be written as

$$A^F_{t+1}(w_{s,t}^*) = u'(c_{s,t+1}) \left(h_{s,t+1}^{\alpha_H} x_{s,t+1} - h_{s,t+1} w_{s,t+1}^* \left(1 + \tau_{t+1}^w\right)\right)$$

$$+ \beta \left(1 - \delta_{x,s}\right) \left[(1 - \xi_{w,s})A^F_{t+2}(w_{s,t+2}^*) + \xi_{w,s}A^F_{t+2}(w_{s,t+2}^*)\right]$$

$A^F_{t+1}(w_{s,t}^*)$ prevents to write the expression recursively. But we can write it out:

$$A^F_{t+1}(w_{s,t}^*) = u'(c_{s,t+1}) \left(h_{s,t+1}^{\alpha_H} x_{s,t+1} - h_{s,t+1} w_{s,t+1}^* \left(1 + \frac{\pi}{P_{t+1}}\right)\right)$$

$$+ \beta \left(1 - \delta_{x,s}\right) \left[(1 - \xi_{w,s})A^F_{t+2}(w_{s,t+2}^*) + \xi_{w,s}A^F_{t+2}(w_{s,t+2}^*)\right]$$
If we then substitute in the expression, and repeat this forever, we get

\[
A^F_t(w^*_s, t) = \sum_{j=0}^{\infty} \left[\beta(1 - \delta_{x,s})\xi_{w,s} \right]^j u'(c_{s,t+j}) \left(h^\alpha_{s,t+j} x_{s,t+j} - h_{s,t+j} w^*_s, t(1 + \tau_{t+j}^w) \right) \\
+ \sum_{j=0}^{\infty} \beta(1 - \delta_{x,s})(1 - \xi_{w,s}) \left[\beta(1 - \delta_{x,s})\xi_{w,s} \right]^j A^F_{t+j+1}(w^*_s, t+1) \\
+ \lim_{j \to \infty} \left[\beta(1 - \delta_{x,s})\xi_{w,s} \right]^j A^F_{t+j+1}(w^*_s, t)
\]

The last row goes to 0. The first row can be written recursively if we define:

\[
S^x_{s,t} = u'(c_{s,t}) h^\alpha_{s,t} x_{s,t} + \beta(1 - \delta_{x,s})\xi_{w,s} S^x_{s,t+1}
\]

\[
S^{wf}_{s,t} = u'(c_{s,t}) h_{s,t+j}(1 + \tau_{t+j}^w) + \beta(1 - \delta_{x,s})\xi_{w,s} \frac{(1 + \bar{\pi})P_t}{P_{t+1}} S^{wf}_{s,t+1}
\]
Using these definitions we can simplify:

\[A^F_t(w^*_s,t) = S^x_{s,t} - S^w_{s,t}w^*_s,t \]

\[+ \sum_{j=0}^{\infty} \beta(1 - \delta_{x,s})(1 - \xi_{w,s})[\beta(1 - \delta_{x,s})\xi_{w,s}]^j A^F_{t+j+1}(w^*_{s,t+j+1}) \]

This leaves us the infinite sum, but we can forward this equation one period, multiply it with \(\beta(1 - \delta_{x,s})\xi_{w,s} \), and subtract it from both sides of the above equation, which cancels the infinite sum. After some algebra, we finally get the recursive form:

\[A^F_t(w^*_s,t) = \left(S^x_{s,t} - S^w_{s,t}w^*_s,t \right) - \beta(1 - \delta_{x,s})\xi_{w,s} \left(S^x_{s,t+1} - S^w_{s,t+1}w^*_s,t+1 \right) + \]

\[+ \beta(1 - \delta_{x,s})A^F_{t+1}(w^*_{s,t+1}) \]
Value functions - firm

We can then similarly define the value of a worker with an average wage for a labour firm:

\[
A_t^F (w_s, t) = u'(c_s, t) \left(h^\alpha h x_s, t - h_s, t w_s, t (1 + \tau_t^w) \right) \\
+ \beta (1 - \delta x_s) \left[(1 - \xi w_s) A_{t+1}^F (w^*_s, t+1) + \xi w_s A_{t+1}^F (w_s, t) \right]
\]

...and after some algebra

\[
A_t^F (w_s, t) = \left(S^x_{s, t} - S^w_{s, t} w_s, t \right) - \beta (1 - \delta x_s) \xi w_s \left(S^x_{s, t+1} - S^w_{s, t+1} w_s, t+1 \right) \\
+ \beta (1 - \delta x_s) A_{t+1}^F (w_s, t+1)
\]
Let $A^H(w^*_s, t)$ be the value of a job for a worker from household type $s \in [i, j]$, where $w^*_{s,j}$ is the renegotiated wage. We use this value in marginal utility terms, so we define $A^H(w^*_s, t) \equiv u'(c_{s,t})A^H(w^*_s, t)$. The value of a job with a renegotiated wage for a worker is then

$$A^H_t(w^*_s, t) = u'(c_{s,t}) \left(h_{s,t}w^*_s(1 - \tau^w_t) - b_{s,t}\right) - \chi \frac{h_{s,t}^{1+\varphi}}{1 + \varphi}$$

$$+ \beta(1 - \delta_{x,s}) \left[(1 - \xi_{w,s})A^H_{t+1}(w^*_s, t+1) + \xi_{w,s}A^H_{t+1}(w^*_s, t)\right]$$

$$- \beta p^W_{s,t} \left[(1 - \kappa_{w,s})A^H_{t+1}(w^*_s, t+1) + \kappa_{w,s}A^H_{t+1}(w_s, t+1)\right]$$

We again have the same problem, so we define

$$S^h_{s,t} = \chi \frac{h_{s,t}^{1+\varphi}}{1 + \varphi} + \beta(1 - \delta_{x,s})\xi_{w,s}S^h_{s,t+1}$$

$$S^{wh}_{s,t} = u'(c_{s,t})h_{s,t}(1 - \tau^w_t) + \beta(1 - \delta_{x,s})\frac{(1 + \pi)}{(1 + \pi_{t+1})}\xi_{w,s}S^{wh}_{s,t+1}$$
Value functions - worker

And we obtain

\[
A_t^H(w^*_s, t) = \left(S_{s,t}^{wh}(w^*_s, t - b_{s,t}) \right) - \beta(1 - \delta_{x,s})\xi_{w,s} \left(S_{s,t+1}^{wh}(w^*_s, t+1 - b_{s,t+1}) \right)
\]

\[
- S_{s,t}^h + \beta(1 - \delta_{x,s})\xi_{w,s} S_{s,t+1}^h
\]

\[
+ \beta \left[1 - \delta_{x,s} - (1 - \kappa_{w,s})\rho_{s,t}^W \right] A_{t+1}^H(w^*_s, t+1) - \beta\kappa_{w,s}\rho_{s,t}^W A_{t+1}^H(w_s, t+1)
\]

We do the same for the value function for the average wage of the worker.
A firm posting a vacancy for household type s must pay a per-period constant cost ψ_s for having a vacancy open. $\kappa_{w,s}$ is the probability that a firm cannot renegotiate the wage for a newly hired worker from segment s. The free-entry condition is:

$$\psi_s = p_{s,t}^F \frac{u'(c_{s,t+1})}{u'(c_{s,t})} \left[(1 - \kappa_{w,s})A_t^F(w_{s,t+1}^*) + \kappa_{w,s}A_t^F(w_{s,t+1}) \right].$$
Wages and hours

Assuming standard (efficient) Nash bargaining between households and labour firms, every period, wages and hours worked are determined by maximising the following expression, where $0 < \eta_s < 1$ measures the bargaining power of workers of type s:

$$\max_{w^*_s,t, h_s,t} \left(A^H_t(w^*_s, t) \right)^{\eta_s} \left(A^F_t(w^*_s, t) \right)^{1-\eta_s}.$$

The result is that wages are split according to the Nash sharing rule:

$$\eta_s(1 - \tau_{wh}^t)A^F_t(w^*_s, t) = (1 - \eta_s)(1 + \tau_{wf}^t)A^H_t(w^*_s, t).$$

Hours are set as:

$$\alpha_H x_{s,t}(h_s,t)^{\alpha_H - 1} = \frac{\chi}{u'(c_{s,t}) (1 - \tau_{wh}^t)} (h_s,t)^{\varphi}.$$
Calibrated using data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Home</th>
<th>REA</th>
<th>US</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching probability, Ricardian workers, ((p^W_i))</td>
<td>0.3021</td>
<td>0.2238</td>
<td>0.5292</td>
<td>0.3442</td>
</tr>
<tr>
<td>Matching probability, HtM workers, ((p^W_j))</td>
<td>0.2090</td>
<td>0.1848</td>
<td>0.5385</td>
<td>0.2598</td>
</tr>
<tr>
<td>Matching probability, firms, ((p^F_s))</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Matching efficiency, Ric. w., ((\varphi_{i,M}))</td>
<td>0.4598</td>
<td>0.3957</td>
<td>0.6086</td>
<td>0.4908</td>
</tr>
<tr>
<td>Matching efficiency, HtM w., ((\varphi_{j,M}))</td>
<td>0.5496</td>
<td>0.5363</td>
<td>0.6642</td>
<td>0.5741</td>
</tr>
<tr>
<td>Vac. posting cost, Ric. w., ((\Psi_i))</td>
<td>0.4091</td>
<td>0.6768</td>
<td>1.1325</td>
<td>0.9170</td>
</tr>
<tr>
<td>Vac. posting cost, HtM w., ((\Psi_j))</td>
<td>1.2933</td>
<td>1.0133</td>
<td>0.8246</td>
<td>1.1525</td>
</tr>
<tr>
<td>Break-up rate, Ric. w., ((\delta_{x,i}))</td>
<td>0.0203</td>
<td>0.0298</td>
<td>0.0592</td>
<td>0.0344</td>
</tr>
<tr>
<td>Break-up rate, HtM w., ((\delta_{x,j}))</td>
<td>0.0443</td>
<td>0.0348</td>
<td>0.1179</td>
<td>0.0359</td>
</tr>
<tr>
<td>Disutility of labour, Ric. w., ((\chi_i))</td>
<td>1.1481</td>
<td>1.2333</td>
<td>1.3882</td>
<td>1.4416</td>
</tr>
<tr>
<td>Disutility of labour, HtM w., ((\chi_j))</td>
<td>4.6902</td>
<td>4.2066</td>
<td>4.8728</td>
<td>4.4392</td>
</tr>
<tr>
<td>Replacement ratio, Ric. w., ((rrat_i))</td>
<td>0.590</td>
<td>0.590</td>
<td>0.084</td>
<td>0.386</td>
</tr>
<tr>
<td>Replacement ratio, HtM w., ((rrat_j))</td>
<td>0.228</td>
<td>0.486</td>
<td>0.084</td>
<td>0.320</td>
</tr>
<tr>
<td>Unemployment rate, ((un))</td>
<td>0.0696</td>
<td>0.1038</td>
<td>0.0605</td>
<td>0.0694</td>
</tr>
<tr>
<td>Unemployment rate, HtM w., ((un_j))</td>
<td>0.1437</td>
<td>0.1334</td>
<td>0.0918</td>
<td>0.0930</td>
</tr>
</tbody>
</table>

Note: REA=Rest of the euro area; US=United States; RW=Rest of world

Sources: Eurostat (unempl. r.), OECD (repl. r., unempl. r.), BLS (unempl. r.)
Calibrated based on the literature

<table>
<thead>
<tr>
<th>Model</th>
<th>Home</th>
<th>REA</th>
<th>US</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse of the Frisch elasticity of labour supply (ζ)</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Matching elasticity, Ric. w., (μ_i)</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Matching elasticity, HtM w., (μ_j)</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Bargaining power, Ric. w., (η)</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Bargaining power, HtM w., (η)</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Prob. to renegotiate existing wage, Ric. w., ($\xi_{w,i}$)</td>
<td>0.8879</td>
<td>0.8879</td>
<td>0.8879</td>
<td>0.8879</td>
</tr>
<tr>
<td>Prob. to renegotiate existing wage, HtM w., ($\xi_{w,j}$)</td>
<td>0.8879</td>
<td>0.8879</td>
<td>0.8879</td>
<td>0.8879</td>
</tr>
<tr>
<td>Prob. to start job at avg. wage, Ric. w., ($\kappa_{w,i}$)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Prob. to start job at avg. wage, HtM w., ($\kappa_{w,j}$)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Note: REA=Rest of the euro area; US=United States; RW=Rest of world

Sources: De Walque et al. (2009), Petrongolo and Pissarides (2001)
Contractionary demand shock - EA-wide

With IT

With ASUT

With AIT

Export

Consumption

Investment

With $u=2$
With $u=0$
ASUT with $u=3$

SG, PJ, ML (BdP, ECB, CBI)

MP Rules and Labour

22-23 May 2023
Contractionary demand shock - country-specific

With IT

With ASUT

With AIT

Output

Unempl. - Ricard.

Unempl. - HtM

REA, $\phi_u = 2$

REA, $\phi_u = 0$

REA, ASUT, $\phi_u = 3$

Home, $\phi_u = 2$

Home, ASUT, $\phi_u = 3$

SG, PJ, ML (BdP, ECB, CBI)

MP Rules and Labour

22-23 May 2023
Contractionary demand shock - country-specific labour

With IT

With ASUT

With AIT

Vacancies - HtM

Vacancies - Ricardian

C of HtM / C Ric.

REA, $\phi_u=2$

REA, $\phi_u=0$

REA, ASUT, $\phi_u=3$

Home, $\phi_u=2$

Home, $\phi_u=0$

Home, ASUT, $\phi_u=3$